Выберите верные утверждения: *
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
Если две стороны одного прямоугольного треугольника соответственно равны двум сторонам другого, то такие треугольники равны.
Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого, то такие треугольники равны.
Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.
Чтобы доказать эту теорему, построим два прямоугольных гольника ABC и А'В'С', у которых углы А и А' равны, гипотенузы АВ и А'В' также равны, а углы С и С' — прямые
Наложим треугольник А'В'С' на треугольник ABC так, чтобы вершина А' совпала с вершиной А, гипотенуза А'В' — с равной гипотенузой АВ. Тогда вследствие равенства углов A и А' катет А'С' пойдёт по катету АС; катет В'С' совместится с катетом ВС: оба они перпендикуляры, проведённые к одной прямой АС из одной точки В. Значит, вершины С и С' совместятся.
Треугольник ABC совместился с треугольником А'В'С'.
Следовательно, тр. АВС = тр. А'В'С'.
Даже рисунок не будем рисовать. Итак,
через три точки , НЕ лежащие на одной прямой, можно провести только ОДНУ плоскость. Значит, у нас три точки А, О и С лежат НА ОДНОЙ прямой, т.е. на АС и т.О лежит между А и С.
Но т.к. окр. описана, то т. О может быть только посередине АС и треуг. АВС - только прямоугольный.
Значит, ОВ=ОА=ОС=5 , отсюда гипотенуза АС=10, катет ВС=8, значит, другой катет АВ=6
площадь треуг. равна 6*8/2=24
Все.