Очень с домашкой! Теперь только им и пользуюсь. СМОТРИ В ПРИЛОЖЕНИИ Школьные Знания.com
1 5-9 ГЕОМЕТРИЯ
Биссектрисы треугольника ABC пересекаются в точке O, причем угол AOB = углу BOC = 110 градусам. а) докажите, что треугольник ABC - равнобедренный, и укажите его основание. б) найдите углы данного треугольника 2 ПОПРОСИ БОЛЬШЕ ОБЪЯСНЕНИЙ СЛЕДИТЬ ОТМЕТИТЬ НАРУШЕНИЕ! от schachtel 24.05.2013
ОТВЕТЫ И ОБЪЯСНЕНИЯ maars maars отличник 2013-05-24T22:30:16+00:00 Пусть угол А=2а, то есть биссектриса делит его на два угла, равным а, аналогично с углом В (2в) и углом С (2с). Рассматриваем треугольник АВО и треугольник ОВС: По т. о сумме углов треугольника в треугольнике АВО: 110+а+в=180, в треугольнике ОВС: с+в+110=180. Приравниваем, получаем: 110+а+в=110+с+в а=с Значит, 2а=2с, а значит, угол С равен углу А, следовательно треугольник АВС - равнобедренный с основание АС. Дальше: угол АОС = 360-110-110= 140. Треугольник АОС, по т. о сумме углов треугольника: а+с+140=180, но т.к. а=с: 2а+140=180 2а=40, значит угол А=угол С=40. Тогда угол В по т. о сумме углов трегольника: 180-40-40=100.
1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
СМОТРИ В ПРИЛОЖЕНИИ
Школьные Знания.com
1
5-9 ГЕОМЕТРИЯ
Биссектрисы треугольника ABC пересекаются в точке O, причем угол AOB = углу BOC = 110 градусам. а) докажите, что треугольник ABC - равнобедренный, и
укажите его основание. б) найдите углы данного треугольника
2
ПОПРОСИ БОЛЬШЕ ОБЪЯСНЕНИЙ СЛЕДИТЬ ОТМЕТИТЬ НАРУШЕНИЕ! от schachtel 24.05.2013
ОТВЕТЫ И ОБЪЯСНЕНИЯ
maars
maars отличник
2013-05-24T22:30:16+00:00
Пусть угол А=2а, то есть биссектриса делит его на два угла, равным а, аналогично с углом В (2в) и углом С (2с).
Рассматриваем треугольник АВО и треугольник ОВС:
По т. о сумме углов треугольника в треугольнике АВО:
110+а+в=180,
в треугольнике ОВС:
с+в+110=180.
Приравниваем, получаем:
110+а+в=110+с+в
а=с
Значит, 2а=2с, а значит, угол С равен углу А, следовательно треугольник АВС - равнобедренный с основание АС.
Дальше:
угол АОС = 360-110-110= 140.
Треугольник АОС, по т. о сумме углов треугольника:
а+с+140=180, но т.к. а=с:
2а+140=180
2а=40, значит угол А=угол С=40.
Тогда угол В по т. о сумме углов трегольника: 180-40-40=100.