ответ: 24
Объяснение:
Смотри рисунок визуально становиться понятно что на против большее диагонали лежит больший угол то есть углы BAD=BCD=120 градусов, а так как углы ромба в сумме должны давать 360 и противоположные углы равны то углы ABC=CDA=60 градусов 360-240=120/2=60 из условия задачи мы знаем что AC=6 см. А еще у ромба есть такое свойство: Диагонали являются биссектрисами то есть углы ADO=ODC=ABO=OBC=30 градусов, а углы DAO=OAB=BCO=OCD=60 градусов соответственно. Есть такое своистово в прямоугольном треугольнике что напротив угла в 30 градусов располагается катет равный половине гипотенузы. Это свойство нам найти сторону ромба, а после зная сторону мы найдем периметр по формуле 4* на длинну стороны, кстати стороны у ромба равны вот. В нашем случае AO=1/2*AD так как AO лежит напротив угла прямоугольного треугольника AOD равного 30 градусов. Так как AD=DC=CB=AB, а углы DAC и ACD равны 60 градусов то треугольник ADC является равнобедренным. А у равнобедренных треугольников биссектриса, проведенная к основанию, является медианой и высотой. А так как угол AOD равен 90 градусов то OD есть не что иное, как высота биссектриса и медиана данного треугольника, а если она медиана то она делит AC пополам значит AO=6/2=3 значит AD=3*2=6, а периметр в итоге равен 6*4=24
20 Иное решение
Объяснение:
Пусть треугольник АВС ( АВ=ВС=х ) . Точка на стороне АС - Р.
АР=21 РС=11 ВР=13
Рассмотрим треугольник АВР и выразим по т косинусов сторону АВ=х, угол ∡АРВ =α
х²=21²+13²-2*21*13*cosα
х²=610-546*cosα (1)
Теперь выразим из треугольника ВСР сторону ВС=х
угол ∡ВРС=180°-∡АРВ=180°-α => cos (180°-α)= -cosα
х²=11²+13²-2*11*13*(-cosα)
х²=290+286*cosα (2 )
Вычтем из (1) (2)
=> 610-546*cosα -290-286*cosα=0
320-832*cosα=0
cosα=5/13
Подставим cosα=5/13 в уравнение (1)
х²=610-546*5/13
x²=400
x=20