Рассмотрим треугольник АВС. АВС - равнобед. так как треугольник АВС равнобед. => ( отсюда следует ) при основании 2 угла =. так как угол А=60° , то В+С=180°-А => В+С=180°-60° В+С=120° ТАК КАК ПРИ ОСНОВАНИИ У РАВНОБЕД ТРЕУГОЛЬНИКА 2 УГЛА РАВНЫ => В=С 120°÷2=В=С 60°=В=С
Диагонали прямоугольника в точке пересечения делятся пополам. Диагонали прямоугольника равны между собой. При пересечении диагоналей образуются равнобедренные треугольники. Рассмотрим один из них, вершина которого составляет 120 градусов. Находим углы при основании этого треугольника: (180 -120) :2 = 30градусов угол 30 гр лежит против меньшей стороны прямоугольника, принимаем меньшую сторону пр-ка за Х. Теперь рассмотрим треугольник, образованный одной диагональю. Он -прямоугольный, в котором меньший катет лежит против угла в 30 гр.и равен Х, следовательно гипотенуза(диагональ) = 2Х 2Х+Х = 36 (по условию) 3Х = 36 Х = 12 2Х = 24 ответ: 24 см - диагональ прямоугольника.
Градусные меры, приведены на рисунке, решение: 1. В красный на рисунке обведены те градусы что не заданы в условии, тогда исходя из условия данных углов, найдем угол DBA: Получаем, что DBA равен 65 градусов.
2. Треугольник ABD = треугольнику DBC: 1) ВD - общая сторона 2) угол ABD= углу DBC(доказано выше) 3) АВ=ВС (из условия) Получаем что треугольники равны, по двум сторонам и углу между ними.
3. У равных треугольников соответствующие элементы равны, получаем: 1)Угол BDA= углу BDC = 30 2) угол DAB = углу BCD = 85
4.Проверим правильно ли мы нашли, сумма углов выпуклого четырехугольника равна 360 градусов: Что и требовалось доказать. ответ: 30, 65, 80 градусов
В+С=180°-А =>
В+С=180°-60°
В+С=120°
ТАК КАК ПРИ ОСНОВАНИИ У РАВНОБЕД ТРЕУГОЛЬНИКА 2 УГЛА РАВНЫ =>
В=С
120°÷2=В=С
60°=В=С