М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
VaDiMiR3000
VaDiMiR3000
11.03.2023 09:54 •  Геометрия

Вравнобедренном треугольнике боковая сторона относиться к основанию как 3: 5. найдите стороны треугольника, если его переиметр равен 44 см.

👇
Ответ:
minskaya86
minskaya86
11.03.2023
........................................
Вравнобедренном треугольнике боковая сторона относиться к основанию как 3: 5. найдите стороны треуго
4,7(84 оценок)
Ответ:
mustafina1990
mustafina1990
11.03.2023
3x+3x+5x=44
11x=44
x=4
12,12,20
4,4(30 оценок)
Открыть все ответы
Ответ:
Ilona286
Ilona286
11.03.2023
1) M - cередина AD,
M∈(ABC), C∈(ABC) ⇒ проведем MC
(B1C)∈(BCC1), M∈(ADD1), а т.к. (ADD1) || (BCC1), то секущая плоскость будет пересекать (АDD1) по прямой k, проходящей через точку М параллельно B1C. k пересечет АА1 в точке N, причем AN=NA1. 
N∈(AA1B1) и B1∈(AA1B1) ⇒ проведем NB1 
MNB1C - сечение куба 
2) MN || B1C, CM=B1N=√(a²-(a/2)²)=a√3/2 ⇒ MNB1C трапеция
S (MNB1C) = 1/2 (MN+B1C) * NH, где NH - это высота трапеции 
B1C=a√2 / 2 
MN = 1/2 B1C = a√2 / 4
B1H = 1/2 (B1C - MN) = a√2 / 4
NH = √(B1N² - B1H²) = a√10 / 4
S (MNB1C) = 3 a² √5 / 16
Дан куб abcda1b1c1d1, ребро которого равно а. секущая плоскость проходит через середину ребра ad и п
4,7(53 оценок)
Ответ:
Evka07
Evka07
11.03.2023

а) Углы ∠BDC и ∠BAC равны, так как они опираются на одну и ту же дугу BC. Тогда в ΔABE угол ∠ABE = 30° (так как ∠BAC = 60°). Обозначим точку пересечения прямой ME со стороной AB за K. Тогда в прямоугольном треугольнике BKE угол ∠BEK = 60°. Далее, ∠BEK = ∠MED = 60° (как вертикальные). Отсюда получаем, что ΔEDM — равносторонний (так как все углы по 60°), то есть EM = ED = MD ~ x. Так как в прямоугольном треугольнике CED против угла в 30° лежит катет, в 2 раза меньший гипотенузы, то CD = 2x. Получили, что так как DM = x, точка M является серединой гипотенузы CD, то есть EM — медиана ΔCED. Что и требовалось доказать.

б) Из ΔABE получаем, что  Тогда по теореме Пифагора из ΔADE получаем:

Отсюда получаем, что  

 

Объяснение:

4,5(86 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ