1)Рассмотрим ΔАВF угол В = 45 гравдусов(т.к. ВF-биссекриса) 2)угол А = 90 градусов (т.к. Δ прямоугольный) 3)угол F = 180-(90+45)=45 градусов ⇒ ΔАВF равнобедренный⇒ сторона АВ=AF=4 см 4)AD=AF+FD AD=4+6=10 см 5)P=(AB+AD)·2 P=(4+10)·2=28 см
Половина высоты относится к радиусу вписанной окружности основания как tg(a) tg(a) = h/2/r r = h/(2tg(a)) В равностороннем треугольнике центр вписанной окружности - это точка пересечения медиан, биссектрис и высот. Медианы делятся точкой пересечения как 2 к 1 начиная от угла, и которого построена медиана. Поэтому полная длина медианы равна 3r Рассмотрим прямоугольный треугольник, равный половине основания. Обозначим сторону основания x. Тогда по Пифагору x² = (x/2)² + (3r)² 3/4*x² = 9r² x² = 12r² x = 2√3*r = 2√3*h/(2tg(a)) = h√3/tg(a) Площадь основания S = 1/2*x*3r = 1/2*h√3/tg(a)*h/(2tg(a)) = √3/4*(h/tg(a))² И объём V = 1/3*S*h = 1/3*√3/4*(h/tg(a))²*h = 1/(4√3)*h³/(tg(a))² на картинке слева сечение пирамиды в вертикальной плоскости, справа - основание.
Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).