1. Проекция бокового ребра L на основание равна половине диагонали d основания:
d/2=(a/2)*под корнем 2=(9 под корнем 2/2)*под корнем 2=9
Тогда боковое ребро L равно:
L=(d/2)/cos a=9/(под корнем 3/2)=18/под корнем 3=6 под корнем 3.
б) Для этого надо найти апофему А.
А=под корнем(L²-(a/2)² )=под корнем(108-(12/4))=под корнем 270/2=3 под корнем30/2.
Периметр основания: Р=3а=3*9 под корнем 2=27 под корнем 2
Площадь Sбок боковой поверхности пирамиды равна:
Sбок=(1/2)РА=(1/2)*(27 под корнем 2)*(3 под корнем 30/2)=81 под корнем 15/2 кв.ед
С транспортиром я тебе не через компьютер, но измерив данный угол, ты можешь найти градусную меру угла, смежного с данным, отняв измеренную величину из 180 (т .к. сумма смежных углов равна 180 градусам), получишь угол смежный с данным. Затем разделишь полученную градусную меру пополам и узнаешь на какие углы делит биссектриса смежный угол с данным. Отложишь его с транспортира и все.
например, тебе дан угол 64 градуса, ты из 180-64 = 116 градусов, затем делишь полученный угол пополам (в нашем случае, 116: 2 = 58 градусов) и с транспортира откладываешь угол 58*. Соединив с вершиной угла, получишь биссектрису.
Тогда т.к. cos(ABC)=1/2, то по т. косинусов b²=a²+c²-aс.
Кроме того, a²+c²=(a+c)²-2ac=(P-b)²-2ac, значит подставляя это в т. косинусов, получим b²=(P-b)²-2ac-aс, откуда ac=((P-b)²-b²)/3=(P-2b)P/3.
Значит площадь S треугольника ABC равна
S=(1/2)*ac*sin(60°)=(P-2b)P/(4√3)=P*r/2, откуда
r=(P-2b)/(2√3)=(15-2·6)/(2√(3π))=√3/(2√π).
Значит площадь вписанного круга равна π·r²=π·3/(4π)=3/4.
более короткий).
Если обозначить через x,y,z отрезки на которые точки касания вписанной окружности разбивают стороны треугольника, то получим x+y+z=P/2 и x+y=b, откуда z=P/2-b. Т.к центр впис. окружности лежит на биссектрисе угла в 60 градусов, то r=z·ctg(30°)=(P-2b)/(2√3).