Проведём построения и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и BOH, они прямоугольные, стороны AO и OB равны как радиусы окружностей, OH — общая, следовательно, треугольники AOH и HOB равны. Откуда AH=BH= дробь, числитель — AB, знаменатель — 2 =10. Аналогично, равны треугольники COK и KOD, откуда CK=KD. Рассмотрим треугольник BOH, найдём OB по теореме Пифагора:
OB= корень из { OH в степени 2 плюс BH в степени 2 }= корень из { 24 в степени 2 плюс 10 в степени 2 }=26.
Рассмотрим треугольник OKD, он прямоугольный, из теоремы Пифагора найдём KD:
KD= корень из { OD в степени 2 минус OK в степени 2 }= корень из { OB в степени 2 минус OK в степени 2 }= корень из { 26 в степени 2 минус 10 в степени 2 }=24.
Таким образом, CD=2KD=2 умножить на 24=48.
ответ: 48.
Из условия автоматически следует, что диагонали параллелограмма взаимно перпендикулярны (потому что стороны прямоугольника параллельны диагоналям - это же - средние линии:) в треугольниках, на которые диагонали делят параллелограм). Этого уже более чем достаточно, но для вящей точности скажу, что раз диагонали перпендикулярны,то КАЖДАЯ делит параллелограм на РАВНОБЕДРЕННЫЕ треугольники, потому что в них медианы и высоты к основанию (которым и является диагональ) совпадают. Значит все стороны равны между собой.
Пусть меня простят :), что я тут же не стал доказывать, что диагонали параллелограмма делятся точкой их пересечения пополам. Не пересказывать же мне тут ВСЮ геометрию :))
По свойству четырехугольника (заметьте, не только равнобедренной трапеции), в который можно вписать окружность, следует, что суммы противоположных сторон равны, в нашем случае сумма боковых, (а она равна 17+17=34) равна сумме оснований. Но площадь считаем как полусумма оснований на высоту. т.е. 17Н=255, отсюда Н=15, значит, радиус, который равноудален от оснований равен 15/2=7,5/см/, а длина окружности равна 2πr=2π*7,5=15π/см/
Отвтет 15π см
Дерзайте.