см рис. во вложении. Обозначим середину ВС точкой К. Известно, что угол, опирающийся на диаметр является прямым. Для данного треугольника угол ВКМ - прямой. Медиана совпадает с высотой в равнобедренном треугольнике, значит МС=МВ и диаметр описанной окружности в два раза больше диаметра заданной, потому что точка М является центром описанной окружности треугольника. МК - срединный перпендикуляр и МТ тоже срединный перпендикуляр. Это видно из второго рисунка, там показаны конгруэнтные треугольники. В пересечении срединных перпендикуляров находится центр описанной окружности. А можно и еще проще рассуждать: ВМ = МС = 3, АМ = МС = 3. Расстояние от точки М до вершин треугольника АВС равное, значит М - центр описанной окружности.
ответ диаметр равен 6.
В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна
ВС+АD=16·2=32
Большее основание равно
AD=32-BC=32-6=26
Отрезок НD- меньший из двух, на которые высота делит основание АД.
Полуразность оснований равна
HD=(26-6):2=10
ответ: Отрезок HD=10
№10
а)Т.к. ∠Д=∠В=90°, то треугольники прямоугольные. В них АД=СВ- по условию,
ДВ-общая. Значит, треугольники АДВ и СВД равны по двум катетам.
№6 ΔСЕД=ΔСFД, ∠Е=∠F=90град.
СД -общая. ЕД=FД по условию, треуг. равны по катету и гипотенузе.
б) ΔАЕД=ΔВFД т.к. ∠АЕД=∠ДFВ = 90°, АД=ВД по условию,
ЕД=FД по условию. треуг. равны по гипотенузе и катету.
в) треугольники АСД И ВСД равны, т.к. составлены из двух равных, а именно АСД из треугольников АЕД И СЕД, треугольник ВСД составлен из треугольников ВFД и ДFС
№7.
а)ΔМSR=ΔNRS, в них ∠M=∠N=90°, ∠NRS=∠MSR по условию, RS-общая. Треугольники равны по острому углу и гипотенузе.
б) Если от равных треугольников NRS и MSR отнять один и тот же ΔRTS, то останутся равные треугольники, а именно
ΔRMT=ΔSNT
№8.
а)∠К=∠L=90°
ΔМLN =ΔNКМ. В них МN-общая, ∠М=∠N по условию, значит треугольники равны по острому углу и гипотенузе.
б)ΔКRМ=Δ LRN, (∠L=∠ К=90°) т.к. если от равных ΔМLN и ΔNКМ отнять один и тот же треугольник МRN, то останутся тоже равные треугольники.
№9. ΔАДЕ=ΔВFМ, в них ∠М=∠Е=90°, АД=FВ по условию,
и так как ДС=FC, то АС=СВ, и ΔАСВ- равнобедренный, в нем углы при основании равны. угол А равен углу В. Значит, треугольники равны по острому углу и гипотенузе.