Обозначим точку пересечения высот обеих плоскостей и АВ через О; Найдем ДО -высоту равнобедренного треугольника она будет высотой медианой в равнобедренном треугольнике , так же как и ОС будет высотой медианой в равностороннем треугольнике.ДА^2-АО^2=2^2+(\/3)^2=1;Откуда ДО=1; Ищем СО^2: АС^2-АО^2=12-3=9; Откуда СО=3; Итак имеем 3стороны треугольника: с величинами :1;3; и \/7; По ТЕЛРЕМЕ косинусов найдем угол ДОС; ДС^2=ДО^2+ОС^2-2ДО*ОС*cosДОС; Подставим и получим числовой результат: 7=1+9-6*cosДОС; 6cosДОС=3; Cos ДОС=1/2; Откуда угол ДОС равен 60* ; ответ угол наклона ДОС равен 60*;
Малая диагональ делит ромб на два треугольника так как один угол равен 60° и треугольник равнобедренный, то остальные два угла равны между собой и равны (180-60):2=60° Следовательно треугольник равносторонний и сторона ромба равна малой диагонали и равна 8см. площадь ромба состоит из суммы площадей двух одинаковых треугольников найдем площадь треугольника по формуле Герона S=√(p(p-a)(p-b)(p-c)) a, b, c - стороны треугольника p - полупериметр Р=8+8+8=24см р=24:2=12см S=√(12*4*4*4)=√(3*4*4*4*4)=16√3 S ромба равна 32√3
5-основание, 11- боковые стороны (11+11> 5, 11+5>11)