1. y=4-x², график парабола ветви направлены вниз
x | -2| -1 |0 | 1 | 2
y | 0 | 3 | 4 | 3 |0
2. границы интегрирования: 4-x²=0, x₁=-2, x₂=2. => a=-2, b=2
3. подынтегральная функция: y=4-x²
4. S= S_{-2} ^{2} (4- x^{2} )dx=(4x- \frac{ x^{3} }{3} )| _{-2} ^{2} =(4*2- \frac{ 2^{3} }{3} )-(4*(-2)- \frac{(-2) ^{2} }{3} )4.S=S
−2
2
(4−x
2
)dx=(4x−
3
x
3
)∣
−2
2
=(4∗2−
3
2
3
)−(4∗(−2)−
3
(−2)
2
)
=8- \frac{8}{3} +8- \frac{8}{3} =16- \frac{16}{3} = \frac{32}{3}=8−
3
8
+8−
3
8
=16−
3
16
=
3
32
S=10 \frac{2}{3}S=10
3
2
ед.кв.
ответ: 192 см
Объяснение:
ВН - высота равнобедренного треугольника, проведенная к основанию, значит ВН - медиана,
АН = НС = ВН/2 = 15 см
ΔАВН: ∠АНВ = 90°,
по теореме Пифагора
АВ = √(АН² + ВН²) = √(15² + 8²) = √(225 + 64) = √289 = 17 см
Pabc = АВ + АС + ВС = 17 + 30 + 17 = 64 см
__________________________________
Углы при основании равнобедренного треугольника равны, тогда
∠А = ∠С = (180° - ∠В)/2
∠А₁ = ∠С₁ = (180° - ∠В₁)/2
По условию ∠В = ∠В₁, значит и ∠А = ∠А₁, ⇒
ΔАВС ~ ΔА₁В₁С₁ по двум углам.