Обозначим KM и MT как 2x и 5x соответственно ,тогда AC=2KT=14x (по свойству средней линии треугольника). Пусть BH=y, тогда HC=y+9; BT=(BH+HC)/2=(2y+9)/2 (KT-средняя линия), HT=BT-BH=(2y+9)/2-y=4,5(см). Так как KT - средняя линия треугольника ABC, то MT ║ AC, то есть ∆MHT~∆AHC (это можно обосновать равенством соответственных углов при параллельных прямых), коэфф.подобия k=MT/AC=5x/14x=5/14 => HT/HC=5/14 <=> 4,5/(y+9)=5/14. Решая это уравнение, получим,что y=BH=3,6 (см), HC=y+9=12,6 (см), BC=BH+HC=3,6+12,6=16,2(см). ответ: 16,2.
Объём пирамиды=1/3*площадь основани*высота пирамиды. основание - правильный треугольник со стороной 6 см, значит 1/4корень из 3*сторону в квадрате=1/4корень из 3*6 в квадрате=9корен из 3. высота пирамиды. если её провести к высоте основания, то получиться прямой треугольник со стороной 60 градусов у основания и 30 - у вершины. Сторона против угла в 60 градусов=половине гипотенузы т. е. гипотенуза - боковое ребро, следовательно 6/2 = 3. Высота пирамиды - это катет этого прямого треугольника = 3. площадь = 1/3*9корень из 3*3=9корень из 3