Стороны треугольника равны 6, 25 и 29. Найти радиус окружности, проходящей через середины сторон этого треугольника. Окружность проходит через середины сторон треугольника. Следовательно она является описаной окружностью для треугольника составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника Длины средних линий найти просто это половина сторон исходного треугольника . Исходный треугольник 6, 25, 29 Треугольник из средних линий 3; 12,5; 14,5. Радиус описанной окружности определяется по формуле R =a*b*с/(4корень(p(p-a)(p-b)(p-c))). где p=(a+b+с)/2 У нас а=3;b=12,5; c=14,5 p =(3+12,5+14,5)/2=30/2=15 Находим радиус R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))= = 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625
1 По теореме синусов, отношение стороны треугольника к синусу противолежащего угла равно удвоенному радиусу описанной окружности. 2R = 8√3/sin(60°) R = 4√3/(√3/2) = 8 2 Верхний рисунок Теорема косинусов для треугольника 6,10,13 13²=10²+6²-2*10*6*cos(fi) 169=100+36-120*cos(fi) 33=-120*cos(fi) 11=-40*cos(fi) cos(fi)=-11/40 Теорема косинусов для треугольника 6,10,x x²=10²+6²-2*10*6*cos(180-fi) x²=100+36-120*(-cos(fi)) x²=136+120*cos(fi) x²=136+120*(-11/40) = 136-3*11 = 103 x=√103 -------------------- Казалось, что разное расположение диагоналей даст разные результаты. Но нет, на нижнем рисунке сперва теорема косинусов для треугольника 6,10,13 13²=10²+6²-2*10*6*cos(180-fi) 169=100+36+120*cos(fi) 33=120*cos(fi) 11=40*cos(fi) cos(fi)=11/40 Теорема косинусов для треугольника 6,10,x x²=10²+6²-2*10*6*cos(fi) x²=100+36-120*(cos(fi)) x²=136-120*cos(fi) x²=136-120*(11/40) = 136-3*11 = 103 x=√103 3 Центр вписанной окружности = точка пересечения биссектрис углов треугольника. Поэтому отрезки 5 и 12 от вершин острых углов до точки касания вписанной окружностью гипотенузы имеют равные им отрезки 5 и 12 до точек касания окружностью катетов. Т.к. треугольник прямоуголен, то отрезки катетов от вершины прямого угла и два радиуса вписанной окружности образуют квадрат со стороной 3. И длины катетов составляют 3+5=8 см 3+12=15 см
36:2=18
ответ: радиус окр 18