Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Начертим окружность с центром в точке пересечения прямых. Обозначим прямые АВ, СК, МН. Сумма углов, образованных этими прямыми, 360 градусов. По одну сторону от каждой прямой расположены три угла. Они могут быть любой величины, но их сумма составляет развернутый угол. Получены три пары равных вертикальных углов. На рисунке равные углы закрашены одинаковым цветом. ∠1=∠4 ∠2=∠5 ∠3=∠6 Выберем не прилежащие один к другому углы 1, 3, 5 Их сумма равна сумме 1+2+3, лежащих по одну сторону от СК и образует угол 180°, т.е. два прямых угла. То же самое мы сможем доказать для любых трех других углов, не прилежащих один к другому.
ответ:7см