Сумма углов, прилежащих к боковой стороне трапеции, равна 180°. Обозначим меньший угол Х, тогда больший будет Х+100°. Получим уравнение: х + х + 100 = 180 Отсюда х = 40° - острый угол. Второй угол 40 + 100 = 140°. Так как трапеция равнобедренная, углы при ее основаниях попарно равны. Следовательно, наибольший угол трапеции равен 140°.
Площадь одной грани куба равна площади квадрата со стороной 5 см и равна 5²=25 см².
Боковая поверхность куба состоит из 4 граней, следовательно, её площадь равна 25*4=100 см²
Полная поверхность куба состоит из 6 граней, следовательно, её площадь равна 25*6=150 см²
Диагональное сечение куба представляет из себя прямоугольник, одна сторона которого равна диагонали грани куба, а другая равна ребру куба. Диагональ грани куба равна диагонали квадрата со стороной 5 см и равна 5√2 см. Следовательно, площадь диагонального сечения равна 5√2*5=25√2 см².
14) Положительное число, которое показывает, сколько раз градус и его части укладываются в данном угле 15) АОВ=АОС+СОВ 16) Прямой, если равен 90 град. Острый, если меньше 90. Тупой, если больше 90 17) Два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой; 180 град. 18) Те, у которых стороны одного угла являются продолжениями сторон другого; вертик. углы равны 19) Те, которые образуют четыре прямых угла 20) Рассмотрим прямые АВ и СН, перепендик. к прямой РХ. Мысленно перегнём рисунок по прямой РХ так, чтобы верхняя часть рисунка наложилась на нижнюю. Так, как прямые углы АРХ и ВРХ равны, то луч РА наложится на луч РВ. Аналогично Луч ХС наложится на луч ХН. Поэтому, если предположить, что прямые АВ и СН пересекаются в точке М, то эта точка также наложится на некоторую точку М1, также лежащую на этих прямых, и мы получим, что через точки М и М1 проходят две прямые АВ и СН, а это не возможно. Следовательно, две прямые, перпендикулярные у третей не пересекаются 21)теодолит, экер
х + х + 100 = 180
Отсюда х = 40° - острый угол.
Второй угол 40 + 100 = 140°.
Так как трапеция равнобедренная, углы при ее основаниях попарно равны. Следовательно, наибольший угол трапеции равен 140°.