Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла. Катеты — стороны, лежащие напротив острых углов. Катет, лежащий напротив угла, называется противолежащим (по отношению к углу ). Другой катет, который лежит на одной из сторон угла, называется прилежащим. Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе. Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе. Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему. Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу. Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу).
Вспоминаем свойство диагоналей прямоугольника: Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам. Значит ΔАОД и ΔВОА - равнобедренные, и ∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40° АЕ=ЕВ, т. к. по условию Е - середина АВ. То есть в ΔВОА ОЕ - медиана. Далее вспоминаем следующее свойство равнобедренного треугольника: Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой. Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит: ∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
По теореме о сумме смежных углов: сумма смежных углов равна 180°.
1) Пусть градусная мера одного угла 2х, тогда второго — 3х. Составим уравнение:
2х + 3х = 180, 5х = 180, х = 36;
2х = 2 ⋅ 36 = 72; 3х = 3 ⋅ 36 = 108. Получаем, что смежные углы равны 72° и 108°.
2) Пусть градусная мера одного угла 3х, тогда второго — 7х. Составим уравнение:
3х + 7х = 180, 10х= 180, х = 18;