1) Пользуемся формулой: (х-х₁)/(x₂-x₁)=(y-y₁)/(y₂-y₁)
A x=0 y=2; B x=-3 y=7
Подставляем уже известные нам координаты:
(х-0)/(-3-0)=(y-2)/(7-2)
(x)/(-3)=(y-2)/(5)
теперь пытаемся привести к обычному виду: y=kx+m
домножим всё на -3 и 5, получим:
5x=(y-2)*(-3)
5x=-3y+6
Переносим 6:
-3y=5x-6
делим на -3:
y=(5x/-3)+2
2) Дан треугольник АВС, АD - медиана, А(5;1),B(0;3),C(4;7).
Найти: AD.
Во первых, посчитаем все стороны:
Чтобы найти длину стороны нужно из координат одного конца вычесть координаты другого конца и сложить их:
d=√((х₁-х₂)+(у₁-у₂))
АВ=√((5-0)+(1-3))
АВ=√(5-2) =√3
АС=√((5-4)+(1-7))
АС=√(1-6)=√5
ВС=√((0-4)+(3-7))
ВС=√(-4-4) = √8
Теперь, будем искать медиану. Она равна:
Т.к АD- медиана, то она падает на сторону ВС.
По формуле:
АD=1/2(2АC²+2AB²+BC²)
AD=1/2(2*5+2*3+8)
AD=1/2(10+6+8)
AD=24/2 = 12.
3)AC/СB = 3/1 по условию.
Дальше, находим по формуле точки на прямой: х=(х₁+х₂)/2; y=(y₁+y₂)/2
xy-координаты точки с, х₁у₁ - координаты точки А.
Выводим:
x₁=2x-x₂ = 2*2-1 =3 y₁=2y-y₂ = 2*-1-2 = 4
A(3;4)
Как-то так.
1) Прямая ОА пересекает окружность в двух точках, так как прямая бесконечна. Луч ОА пересекает окружность в одной точке, так как луч бесконечен в сторону точки А. Отрезок ОА не пересекает окружность, так как находится внутри нее.
2) Представим, что из точки на окружности К проведен радиус КОВ и хорда КС, равная радиусу. Проведем отрезок СО, который будет тоже являться радиусом окружности, и получим равносторонний треугольник КОС, в котором все стороны равны радиусу окружности. Все угла в равностороннем треугольнике равны 180/3=60 градусов.
Объяснение:
Сумма углов любого треугольника 180°, в т.ч. и нашего треугольника АВС.
∠А+∠В+∠С=90°
Поскольку по условию задания CAB=2*ACB, значит в треугольнике АВС
∠А=2*∠С, выходит
2*∠С+90°+∠С=180°
3*∠С=90°
∠С=30°.
Значит ∠А=2*∠С=2*30°=60°.
Рассмотрим прямоугольный треугольник АВС дальше:
АС-гипотенуза, АВ и ВС - это катеты
cos ∠А=АВ/АС
sin ∠А=ВС/АС
cos ∠А=cos 60°=1/2=0,5
sin ∠А=sin 60°=√3/2=0,5√3
cos ∠А=АВ/АС
0,5=АВ/АС, отсюда АВ=0,5АС
sin ∠А=ВС/АС
0,5√3=ВС/АС, отсюда ВС=0,5АС√3
У прямоугольника противоположные стороны равны, значит АВ=СД=0,5АС, а ВС=АД=0,5АС√3
Периметр равен сумме длины всех сторон прямоугольника, то есть
Периметр=АВ+ВС+СД+АД
Периметр=0,5АС+ 0,5АС√3+ 0,5АС+0,5АС√3
Периметр=АС+АС√3
Периметр=АС*(1+√3)
ответ: периметр = АС*(1+√3), где АС - это диагональ прямоугольника