Вертикальные углы находятся друг напротив друга, а рядом лежащие углы являются смежными, так как у них одна сторона общая, а не общие стороны лежат на одной прямой.
Равенство вертикальных углов является следствием определения смежных углов. Смежные углы по определению в сумме составляют 180°.
Возьмем любой угол, образованный двумя пересекающимися прямыми, обозначим его как ∠1 и примем его величину как a.
Тогда смежный ∠2 с ним будет равен 180° – a. Но у этого ∠2 с другой стороны есть другой смежный угол – ∠3. Его величина будет равна 180° минус величина ∠2. Но ∠2 у нас равен 180° – a, поэтому:
∠3 = 180° – ∠2 = 180° – (180° – a) = 180° – 180° + a = a
То есть ∠1 и ∠3 равны.
Можно продолжить и доказать, что ∠4 равен ∠2. Если ∠3 равен a, то ∠4, как смежный с ним, равен 180° – a.
На рисунке ниже доказательство выглядит несколько по-другому. ∠2 смежный и с ∠1, и с ∠3. Поскольку его величина постоянна, а сумма смежных углов равна 180°, то чтобы получить величину ∠2, надо из 180 вычитать одно и то же число, значит ∠1 = ∠3.

3. LN=NK*ctg30°=4√3
4.ΔMNR равнобедренный (КM=КN ), значит, углы при основании ∠N=∠М= (180°-120°)/2=30°
ΔNMС (∠С=90°), СN=х, лежит против угла в 30°, значит, равен половине гипотенузы,т.е. 30/=15∠CKN=60°, тогда
∠KNC=30°,ксли NС=15, то если NK=2у, KC=у, то NC=√(4у²-у²)=у√3 по теореме ПИфагора.
у√3=15, у=15√3/3=5√3
Значит, MK=NK=10√3
КС найдем по теореме ПИфарога,
КС =√(KN²-NC²)=√(300-225)=5√3,
МС=МК+КС=10√3+5√3=15√3
Объяснение:3. В прямоугольном ΔКLN LN=х может быть найден, как произведение
противолежащего катета NK=4 на котангенс 30°, т.е.
4*√3