Пусть О - точка пересечения диагоналей параллелограмма АВСД.
Рассмотри четырёхугольник АКСМ.
Его диагональ АС является диагональю параллелограмма АВСД, которая точкой О делится пополам. Следовательно, одна диагональ четырёхугольника АКСМ делится точкой О пополам.
Поскольку ОК = ОВ - ВК, а ОМ = ОД - МД, ВК = МД и ОВ = ОД, то ОК = ОМ.
То есть диагональ КМ четырёхугольника АКСМ состоит из двух равных частей ОК и ОМ.
Получилось, что и 2-я диагональ четырёхугольника АКСМ делится точкой О пополам.
Мы знаем, что если диагонали четырёхугольника делятся точкой пересечения пополам, то этот четырёхугольник - параллелограмм.
Сечение куба проходит по двум параллельным ребрам оснований и двум диагоналям параллельных граней. Т.е. это прямоугольник АВС₁D₁. Так как грани куба - квадраты, их диагонали равны длине стороны квадрата, умноженной на √2. Обозначив длину ребра куба а, получим: d=ВС₁=АD₁=a√2 Тогда S☐= а*а√2=25√2 а=√25=5 см Диагональ куба находят по формуле D=а√3 Отсюда D=5√3. ----------------- Так как диагональ куба лежит в плоскости его диагонального сечения, она совпадает с диагональю сечения, которое дано в условии. Поэтому можно найти диагональ куба и как диагональ этого сечения по т. Пифагора с тем же результатом.
Пусть О - точка пересечения диагоналей параллелограмма АВСД.
Рассмотри четырёхугольник АКСМ.
Его диагональ АС является диагональю параллелограмма АВСД, которая точкой О делится пополам. Следовательно, одна диагональ четырёхугольника АКСМ делится точкой О пополам.
Поскольку ОК = ОВ - ВК, а ОМ = ОД - МД, ВК = МД и ОВ = ОД, то ОК = ОМ.
То есть диагональ КМ четырёхугольника АКСМ состоит из двух равных частей ОК и ОМ.
Получилось, что и 2-я диагональ четырёхугольника АКСМ делится точкой О пополам.
Мы знаем, что если диагонали четырёхугольника делятся точкой пересечения пополам, то этот четырёхугольник - параллелограмм.
Что и требовалось доказать