PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
АВ=ВС, АВ - диаметр окружности. Окружность пересекает стороны АС и ВС в точках М и Н соответственно. ВН=7 см, МС=3 см. Построим отрезки ВМ и АН, которые пересекаются в точке К. ∠ВМА=∠ВНА=90° так как они вписанные в окружность и опираются на дугу в 180°. В равнобедренном тр-ке АВС ВМ⊥АС, значит АМ=МС ⇒ АС=2МС=6 см. Тр-ки АНС и ВМС подобны т.к. ∠С - общий и оба прямоугольные. Пусть НС=х, ВС=ВН+НС=7+х. ВС/МС=АС/НС, (7+х)/3=6/х, 7х+х²=18, х²+7х-18=0, х>0, значит х≠-9, х=2. НС=2 см, АВ=ВС=7+2=9 см - это ответ.
Угол, который вертикальный к углу 1 , будет равен углу 1.
ответ: 65°, 115°, 65°, 115°