Образовались 8 углов, 4 острых угла равных между собой и 4 тупых, также равных между собой. Сумма одного острого и одного тупого угла равна 180°. По условию сумма двух углов равна 296°. Значит в задаче известна сумма двух равных углов, каждый из которых равен 268/2=134°, Смежный угол к любому из них равен 180-134=46°. ответ: 46°; 134°.
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
Сумма внутренних односторонних углов при параллельных прямых равна 180 градусов. биссектрисы разбивают углы на 2 равные части. Пусть первый угол равен 2х, тогда углы на которые его разбивает биссектриса равны х. Второй угол равен 180 - 2х, а биссектрисы разбивают его на два равных угла (180-2х)/2=90-х градусов. тогда образуемый бисектрисами треугольник имеет углы 90-х и х, а так, как сумма внутренних углов треугольника равна 180, то третий угол( угол между биссектрисами) равен 180-х-(90-х)=180 - х-90+х=180-90=90. ответ:90 градусов
ответ: 46°; 134°.