Пусть АВС - прямоуг. равноб. треугольник, где АВ и АС -катеты, и АВ = АС, т. е. угол А - прямой. Из вершины В проведена биссектриса до пересечения с катетом АС в точке Д. Нужно найти соотношение АД и ДС.
Известно, что биссектриса делит противоположную сторону треугольника на части, пропорциональные прилежащим сторонам ( из свойств биссектрисы) .
Значит, АД/ДС = АВ/ВС. Пусть АВ = АС = а . Тогда ВС^2 = а^2 + a^2 = 2a^2 . BC = кв. корень (2a^2) = a*кв. корень (2) .
Тогда АД/ДС = а / ( а*кв. корень (2)) = 1 / кв. корень (2).
Т. е. отрезки катета, разделенные биссектрисой, относятся друг к другу как единица к квадратному корню из двух, считая от прямого угла.
Объяснение:
9 задача:
Дано:
ΔABC; AO=CO; MO=KO.
Доказать что:
ΔABC - равнобедренный.
1.) Рассмотрим ΔAMO и ΔKOC:
1. MO=KO;
2. AO=CO;
3. ∠MOA=∠KOC ( так как эти углы вертикальные);
Дальше ты напротив этих трёх пунктов делаешь фигурную скобку и пишешь: ΔAMO=ΔKOC (по двум сторонам и углу между ними).
2.) AO=CO, следовательно ΔAOC - равнобедренный (так как у равнобедренного треугольника боковые стороны равны)
3.) 1. ∠OAC = ∠OCA (так как ΔAOC - равнобедренный);
2. ∠OAM = ∠OCK (так как ΔAMO = ΔKOC);
3. ∠BAC = ∠OAM + ∠OAC;
4. ∠BCA = ∠OCK + ∠OCA;
Дальше ты опять напротив этих пунктов делаешь фигурную скобку и пишешь:
∠BAC = ∠BCA, следовательно ΔABC - равнобедренный (так как у равнобедренного треугольника углы при основании равны).
ч.т.д.