Пусть данный катет АС, угол - А На произвольной прямой m отложим отрезок, равный длине катета АС. Обозначим его концы А и С. На сторонах заданного угла А циркулем радиуса=АС с центром в т.А сделаем насечки. Обозначим их О и М. Соединим О и М. Из т. А построенного на m катета проведем тем же раствором циркуля полуокружность. Циркулем измерим ОМ и из т.С отложим полуокружность до пересечения с первой в т.К. АС=АМ, АК=АО, отрезок СК равен отрезку ОМ, ⇒ ∆ АКС=∆ АОМ. Следовательно, угол КАС равен заданному. Катет и прилежащий к нему угол построены. На равном расстоянии по обе стороны от С отметим на прямой m т.1 и т.2. Из этих точек, как из центров, начертим полуокружности так, чтобы они пересеклись по обе стороны от прямой m. Точки пересечения соединим. Построен перпендикуляр к прямой m через т. С ( это стандартный построения перпендикуляра, и он наверняка Вам знаком). Точку пересечения перпендикуляра с другой стороной угла А обозначим В. Искомый треугольник АВС по катету АС и прилежащему углу А построен.
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
2) 7+14=21 (см) = FP
ответ: 21 см.