М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
valentina05ru
valentina05ru
25.02.2021 18:21 •  Геометрия

:вычислить площадь ромба, если его высота делит сторону на отрезки длиной 4 см и 5 см.

👇
Ответ:
мпрлкт
мпрлкт
25.02.2021
4×5=20(см)двуе стороны ромба.
20×2=40(см)площадь ромба.
4,4(53 оценок)
Открыть все ответы
Ответ:
labzinaveronika
labzinaveronika
25.02.2021

Угол ВОС=2*угол А=2*60=120 (Угол (А), вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом. Величина вписанного угла (А) равна половине центрального угла (ВОС), опирающегося на ту же дугу). АОВ+АОС=360-угол ВОС=360-120=240. АОВ:АОС=3:5 или 5АОВ=3АОС. Обозначим АОВ-х, АОС-у. Составим систему уравнений:
5х=3у           5(240-у)-3у=0          -8у=-1200         у=150 - угол АОС
х+у=240       х=240-у                      х=240-у            х=90 - угол АОВ
Угол С =0,5АОВ=0,5*90=45 (Угол (С), вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом. Величина вписанного угла (С) равна половине центрального угла (АОВ), опирающегося на ту же дугу).
Угол В=0,5АОС=0,5*150=75 (Угол (В), вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом. Величина вписанного угла (В) равна половине центрального угла (АОС), опирающегося на ту же дугу).

4,6(66 оценок)
Ответ:
emelik96
emelik96
25.02.2021
Пусть Р - точка касания вписанной окружности с боковой стороной АС, Е - точка касания с основанием. Тогда АР=5х, РС=8х. Так как отрезки касательных, проведенных к окружности из одной точки равны, то АЕ=5х. Используя теорему Пифагора для треугольника АСЕ, получим х=2, тогда АС=26, АВ=20, площадь треугольника АВС равна 240. 
Окружности, касающиеся одной из сторон треугольника и продолжений двух других, называются вневписанными. Таких окружностей три (они изображены на прилагаемом рисунке). 
Существуют формулы, выражающие радиусы вневписанных окружностей через стороны треугольника и его площадь, а именно: радиус `r_a` вневписанной окружности, касающейся стороны `a` и продолжений сторон `b` и `c`, равен `r_a=2S/(b+c-a) =S/(p-a)` (p- полупериметр) 
Соответственно радиус `r_b` вневписанной окружности, касающейся стороны `b` и продолжений сторон `a` и `c`, равен `r_a=2S/(a+c-b) =S/(p-b)`, а радиус `r_c` вневписанной окружности, касающейся стороны `c` и продолжений сторон `a` и `b`, равен `r_a=2S/(a+b-c) =S/(p-c)` 
Тогда радиусы вневписанных окружностей для данного треугольника равны 
`R_1=R_2=480/(26+20-26)=24` 
`R_3=480/(26+26-20)=15` 
ответ: 24,24,15 
UPD 
Приведу доказательство вышеупомянутой формулы для окружности, касающейся стороны Ас и продолжений сторон АВ и ВС. Пусть радиус этой окружности `R_1` 
`S_(ABC)=S_(BAO_1)+S_(BCO_1)-S_(ACO_1)=(1/2)*(R_1*AB+R_1*BC-R_1*AC)`. 
Откуда `R_1=(2S)/(AB+BC-AC)`, где `S` - площадь треугольника АВС
4,4(1 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ