1. Дано: угол 2 = угол 1 + 34°; Найти: угол 3. Решение: Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1. Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение: угол 1 + угол 1 + 34° = 180°. Отсюда угол 1 = 73°. Значит, угол 3 = 73°. ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°. Найти: угол А, угол В. Рисунок к задаче - в приложении к ответу. Решение: Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B. Т.к. угол DCB = 37°, то угол B = 37°. Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB. Угол А = 180° - 90° - 37° = 53°. ответ: угол А = 53°, угол В = 37°.
1)Решаем систему уравнений 2)Составить уравнение окружности с центром в точке А(4;5),которая касается прямой. Прямая не указана. Поэтому неизвестен радиус (х-4)²+(у-5)²=R² 3) Точки пересечения окружности х²+у²=9 с осью абсцисс : у=0 ⇒ х²+0²=9 ⇒х²=9 ⇒ х=-3 или х=3 (-3;0) и (3;0) с осью ординат: х=0 ⇒ у²=9 ⇒ у=-3 или у =3 (0;-3) и (0;3) 4) Запишем уравнение прямой 3х-2у+5=0 в виде у= kx+b 3х-2у+5=0 ⇒ Параллельные прямые имеют одинаковые угловые коэффициенты. Угловой коэфиициент прямой Уравнение всех прямых параллельных прямой имеет вид Чтобы найти значение параметра b принимаем во внимание тот факто, что прямая проходит через точку (-2;2) х=-2 у=2 Подставим в выражение b=2+3=5 ответ. 5) х²+у²-4х+2у+1=0 Чтобы найти центр окружности выделим полные квадраты: х²-4х+у²+2у+1=0 Прибавим 4 слева и справа х²-4х+4+у²+2у+1=4 (х-2)²+(у+1)²=4 Координаты центра окружности (2; -1) Уравнение прямой имеет вид у=kx+b Точка (1;2) принадлежит прямой, её координаты удовлетворяют уравнению 2=k·1+b (*) Центр окружности (2;-1) принадлежит прямой, координаты удовлетворяют уравнению -1=k·2+b (**) Решаем систему двух уравнений (*) и (**): Вычли из первого уравнения второе ответ. у=-3x-1
Найти: угол 3.
Решение:
Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1.
Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение:
угол 1 + угол 1 + 34° = 180°.
Отсюда угол 1 = 73°.
Значит, угол 3 = 73°.
ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°.
Найти: угол А, угол В.
Рисунок к задаче - в приложении к ответу.
Решение:
Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B.
Т.к. угол DCB = 37°, то угол B = 37°.
Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB.
Угол А = 180° - 90° - 37° = 53°.
ответ: угол А = 53°, угол В = 37°.