Основанием прямой треугольной призмы ABCA,B,C, является равнобедренный треугольник ABC, в котором АВ = ВС = 20, AC = 32. Боковое ребро призмы равно 24. Точка Р принадлежит ребру ВВ., причем BP:PB = 1:3. Найти тангенс угла между плоскостями A,B,C, и АСР.
В этой задаче надо знать, что в ортотреугольнике (так называется треугольник A1B1C1) высоты AA1, BB1 и CC1 треугольника ABC являются биссектрисами. Если это известно, то решение занимает пару строчек. H - точка пересечения высот. В четырехугольнике AC1HB1 два угла прямые, поэтому ∠CAB = 180° - ∠B1HC1; но ∠B1HC1 = 180° - (∠HC1B1 + ∠HB1C1); поэтому ∠CAB = ∠HC1B1 + ∠HB1C1 = (∠A1C1B1 + ∠A1B1C1)/2 точно так же ∠CBA = ∠HA1C1 + ∠HC1A1 = (∠B1A1C1 + ∠B1C1A1)/2 ∠BCA = ∠HA1B1 + ∠HB1A1 = (∠C1A1B1 + ∠C1B1A1)/2 то есть углы треугольника ABC будут такие (20° + 90°)/2 = 55°; (20° + 70°)/2 = 45°; (70° + 90°)/2 = 80°;
Теперь я приведу одно из нескольких известных мне доказательств свойства ортотреугольника. Это гораздо интереснее и полезнее, чем эта задачка. Если построить окружность на стороне AC, как на диаметре, то она пройдет через точки A1 и C1 (из за прямых углов). Это означает, что ∠CC1A1 = ∠CAA1; как вписанные углы, опирающиеся на одну и ту же дугу CA1; Точно так же, если построить окружность на стороне BC, как на диаметре, то она пройдет через точки B1 и C1, и ∠CC1B1 = ∠CBA1; как вписанные углы, опирающиеся на одну и ту же дугу CB1; Но ∠A1AC = ∠B1BC = 90° - ∠ACB; следовательно ∠A1C1C = ∠B1C1C, ЧТД => СС1 является биссектрисой ∠B1C1A1; Само собой, и про остальные высоты все доказывается точно так же.
Вопрос «какую часть составляет от» подразумевает, что следует определить, сколько раз один угол помещается в другом, и искомое - одна часть из этого количества. Чтобы ответить на этот вопрос, можно также меньший угол разделить на больший. 1)В прямом угле угол, равный 30°, помещается 90°:30=3 раза, т.е. в прямом три части по 30 градусов. 1:3=1/3 или 30/90=1/3 Следовательно, 30° составляет 1/3 прямого угла. 2)угол 45° 90°:45°=2 1:2=1/2 или 45/90=1/2 45° составляют 1/2 прямого угла 3)60° градусов 90°:60 =1,5 в прямом угле полторы части по 60 градусов или 60/90=2/3 60°=1:1,5=2/3 прямого угла 3)15°90°:15°=6 1:6=1/6 или 15/180=1/12 15°=1/6 прямого угла
————— Точно так же находят части развёрнутого угла. Расчеты писать не буду, их можно сделать самостоятельно. 30°=1/6 развернутого угла45°=1/4 —«—«—«--60°=1/3 —«—«—«--15°=1/12 —«—«—«--
Если это известно, то решение занимает пару строчек.
H - точка пересечения высот.
В четырехугольнике AC1HB1 два угла прямые, поэтому ∠CAB = 180° - ∠B1HC1; но ∠B1HC1 = 180° - (∠HC1B1 + ∠HB1C1);
поэтому ∠CAB = ∠HC1B1 + ∠HB1C1 = (∠A1C1B1 + ∠A1B1C1)/2
точно так же ∠CBA = ∠HA1C1 + ∠HC1A1 = (∠B1A1C1 + ∠B1C1A1)/2
∠BCA = ∠HA1B1 + ∠HB1A1 = (∠C1A1B1 + ∠C1B1A1)/2
то есть углы треугольника ABC будут такие
(20° + 90°)/2 = 55°; (20° + 70°)/2 = 45°; (70° + 90°)/2 = 80°;
Теперь я приведу одно из нескольких известных мне доказательств свойства ортотреугольника. Это гораздо интереснее и полезнее, чем эта задачка.
Если построить окружность на стороне AC, как на диаметре, то она пройдет через точки A1 и C1 (из за прямых углов). Это означает, что ∠CC1A1 = ∠CAA1; как вписанные углы, опирающиеся на одну и ту же дугу CA1;
Точно так же, если построить окружность на стороне BC, как на диаметре, то она пройдет через точки B1 и C1, и ∠CC1B1 = ∠CBA1; как вписанные углы, опирающиеся на одну и ту же дугу CB1;
Но ∠A1AC = ∠B1BC = 90° - ∠ACB; следовательно ∠A1C1C = ∠B1C1C,
ЧТД => СС1 является биссектрисой ∠B1C1A1;
Само собой, и про остальные высоты все доказывается точно так же.