Угол BAD = угол BAM + угол DAM Т.к. угол BAD делится бессектрисой на 2 равных угла, то угол BAD = 33×2 = 66° Противоположные углы в параллелограмме равны => угол BCD = BAD Сумма углов параллелограмма равна 360° => ABC = CDA = (360-(BAD+BCD))/2 = (360-(66+66))/2 = (360-132)/2 =228/2 = 114° ответ: 66 и 114
Точка равноудалённая от катетов образует внутри прямоугольного треугольника квадрат со стороной а, вершины которого - вершина прямого угла, точка на гипотенузе и две точки на катетах, от которых равноудалена заданная. Внутри прямоугольного образовались квадрат и два подобные между собой прямоугольных треугольника, которые подобны исходному треугольнику . пусть Один из катетов прямоугольного треугольника(1) - х и гипотенузой - 40 см, тогда соответствующий катет прямоугольного треугольника(2) - а см и гипотенузой - 30 см. Составим систему уравнений: Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
1) ∠A=∠C=90°, т.к опираются на диаметр. Пусть точка К - точка пересечения хорды АС и диаметра. Рассмотрим тр-к АКО- прямоугольный, у которого катет в 2 раза меньше гипотенузы, значит один из углов 30°, а другой -60°. Рассмотрим тр-к АВО: он равнобедренный с углом 60°, а значит все его углы равны - 60°. Рассм. треугольник АВС - равнобедренный т.к ВК - медиана и высота, тогда ВК - бисектриса ∠АВС, тогда ∠АВС=120°. Четырехугольник ABCD - вписанный, тогда ∠В+∠D=180°, тогда ∠D=60° 2) Найдем боковую сторону треугольника по теореме Пифагора. Она равна - 15 см. Площадь этого треугольника равна ·9·24=108см², а периметр 54 см. r= где р - полупериметр r=4 см R= R= 12,5 см