М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kot2351
Kot2351
26.01.2020 13:25 •  Геометрия

Доказать, что "катет в прямоугольном треугольнике равен половине гипотенузы тогда и только тогда, когдалежащий против него угол равен 30."

👇
Ответ:
lalalala777
lalalala777
26.01.2020
Рассмотрим прямоугольный треугольник ABC, в котором угол А- прямой, угол B- 30º и, значит, угол С- 60º (рис. а) Докажем, что АС=1\2 ВС. Приложим к треугольнику АВС равный ему треугольник ABD так, как показано на так, рисунке б. Получим треугольник BCD, в котором угол В= углу D=60º поэтому DC=BC. Но AC=1/2 DC. Следовательно, АС=1/2ВС, что и требовалось доказать.
Доказать, что катет в прямоугольном треугольнике равен половине гипотенузы тогда и только тогда, ко
4,8(2 оценок)
Открыть все ответы
Ответ:
Прямые АВ1 и ВД1 являются скрещивающимися.
Чтобы найти расстояние между такими прямыми нужно одну из прямых перенести параллельно самой себе так, чтобы она пересекла плоскость другой прямой.
Переносим прямую ВД1 (главную диагональ куба) параллельно себе. Получим прямую В2Д2, которая пересекла плоскость АА1В1В в точке Е, являющейся серединой отрезка АВ1 и серединой отрезка В2Д2. Из точки Е опустим перпендикуляр на прямую ВД1 и попадём точно в середину ВД1, которая является и центром куба О.
Расстояние ЕО и будет расстоянием между прямыми АВ1 и ВД1.
Отрезок ЕО - есть расстояние между центром плоскости АА1В1В  и центром куба. Это расстояние по величине равно половине ребра.
Таким образом, ЕО = 0,5 · 5√6 = 2,5√6
ответ: 2,5√6
4,5(62 оценок)
Ответ:
maslennikovavi2
maslennikovavi2
26.01.2020
Используем свойство касательных, проведенных из одной точки: отрезки касательных к окружности (в нашем случае это КА и КВ), проведенные из одной точки (это К), равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности). Нам важно, что КА=КВ.
Треугольник АКВ получается таким образом равнобедренным, и углы при его основании АВ должны быть равными. Найдем их:
<KAB=<KBA=(180-<K):2=(180-72):2=54°.
Угол КВО прямой, т.к. касательная к окружности КВ перпендикулярна к радиусу ОВ, проведенному в точку касания В. Отсюда
<ABO=<KBO-<KBA=90-54=36°
Касательные к окружности с центром о в точках а и в пересекаются под углом 72 градуса. найдите угол
4,8(53 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ