АВС - основание пирамиды
S - вершина
О - середина основания
SO - высота = 9√3
АВ=ВС=АС= 9√3
SA - ?
Найдём длину АО:
АО = 1/2 * АP
где АР - высота треугольника АВС
Найдем площадь треугольника:
S = a²√3/4 = (9√3)²*√3/4 = 243√3 /4 см²
Также площадь треугольника находится через высоту:
S = 1/2 * a * h
Найдём отсюда высоту:
243√3 /4 = 1/2 * 9√3 * h
1/2 * h = 81/4
h = 81/2 см
AO = 1/2 * 81/2 = 81/4 см
По теореме Пифагора:
SA² = AO²+SO²
SA² = (81/4)² + (9√3)²
SA² = 6561/16 + 243
SA² = 10449/16
SA = √10449/4
ответ: √10449/4 см
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
кут 1+кут 2=120°
Так як кут 1=куту 2, то
кут 1+кут 1=120
2кут 1=120
кут 1=60°
відповідь: 60°, 60°