В выпуклом АВСЕ построим диагональ АС. Рассмотрим получившийся треугольник АВС. Здесь МН - средняя линия, т.к. по условию она соединяет середины сторон АВ и ВС. Значит МН II АС, МН=1/2АС Рассмотрим треугольник АЕС. Здесь РК - средняя линия, т.к. по условию она соединяет середины сторон АЕ и СЕ. Значит РК II АС, РК=1/2АС. Следовательно, МН II РК, МН = РК. Таким образом, в четырехугольнике МНКР две стороны равны и параллельны, значит МНКР - параллелограмм. Диагонали параллелограмма МК и НР точкой пересечения О делятся пополам (МО=КО, РО=НО), что и требовалось доказать.
В выпуклом АВСЕ построим диагональ АС. Рассмотрим получившийся треугольник АВС. Здесь МН - средняя линия, т.к. по условию она соединяет середины сторон АВ и ВС. Значит МН II АС, МН=1/2АС Рассмотрим треугольник АЕС. Здесь РК - средняя линия, т.к. по условию она соединяет середины сторон АЕ и СЕ. Значит РК II АС, РК=1/2АС. Следовательно, МН II РК, МН = РК. Таким образом, в четырехугольнике МНКР две стороны равны и параллельны, значит МНКР - параллелограмм. Диагонали параллелограмма МК и НР точкой пересечения О делятся пополам (МО=КО, РО=НО), что и требовалось доказать.
Значит угол 1 = угол 3, угол 2 = угол 4
Один угол меньше другого на 36*
Пусть угол 1 будет меньше угла 2 на 36*
Угол 1+угол 2 = 180*
х+х-36=180
2х=216
х=108
Угол 2 = 108
Угол 1 = угол 2 - 36*
Угол 1 = 72*