Ромб - это параллелограмм, у которого все стороны равны (докажите сами). То есть ромб является параллелограммом.
<AOE = <ACB (как соответственные углы при ||-ных прямых OE и BC и их секущей AC).
Тогда треугольники ACB и AOE подобны по двум углам (<A=<A, <AOE=<ACB),
тогда их стороны пропорциональны, то есть:
AC/AO = BC/EO = AB/AE. (*)
Треугольники AOB и COD равны (докажите сами), тогда
AO = CO, тогда
AC/AO = (AO+CO)/AO = 2AO/AO = 2.
Тогда из (*):
2 = BC/EO, отсюда EO = (1/2)*BC,
Но у ромба все стороны равны, то есть BC = DC, поэтому
EO = (1/2)*BC = (1/2)*DC.
Ч. т. д.
тогда Р= 2(4х+5х) = 36
2*9х=36
9х=18
х=2
одна сторона = 4*2= 8
вторая сторона = 5*2 = 10
ОТВЕТ: 8;10;8;10.