Объяснение:
Разложим: n³–n=n•(n²–1)=n•(n–1)•(n+1)=(n–1)•n•(n+1)
По условию n-нечетное число, то есть n=2•m+1, m=0, 1, 2, …. Тогда
(n–1)= 2•m и (n+1)= 2•m+2=2•(m+1) чётные числа.
Пусть (n–1) делится на 4. Так как (n+1) делится на 2 как чётное число, то их произведение (n–1)•(n+1) делится 8 (=4•2).
Пусть (n–1) не делится на 4, то из представления (n–1)=2•m заключаем, что (n–1) делится на 2 и m нечётное число. Тогда из представления (n+1)=2•(m+1) имеем, что (m+1) чётное число, а следовательно (n+1)=2•(m+1) делится на 4.
Значит произведение (n–1)•(n+1) делится 8.
Как известно, при делении натурального числа на 3 получаем остаток 0, 1 или 2. В произведении (n–1)•n•(n+1) участвуют три последовательные числа, то есть возрастают на единицу. Поэтому, при делении этого произведения получим один из наборов остатка: 0, 1, 2 или 1, 2, 0 или 2, 0, 1. Отсюда следует, что при делении на 3 остаток от деления одного из множителей равен 0, которое означает, что этот множитель делится на 3.
Итак, мы доказали, что n³–n делится на 8 и 3. Так как (наибольший общий делитель) НОД(8; 3)=1, то n³–n делится на 24 (=8•3).
Пусть х см – одна сторона прямоугольника, тогда другая сторона будет равна (х + 6) см. Т.к. площадь это произведение сторон и она составляет 112 см2, тогда получим уравнение:
х * (х + 6) = 112,
х2 + 6х = 112,
х2 + 6х - 112 = 0.
Для решения рассчитываем, чему равен дискриминант:
D = b2 - 4ac,
D = 36 - 4 * (-112) = 36 + 448 = 484.
Находим корни уравнения:
х = (-b ± √D) / 2a
х = (-6 ± 22) / 2
х1 = -14, х2 = 8.
Длина может быть только положительной величиной.
Тогда длина составит:
8 + 6 = 14 (см).
ответ: стороны равны 8 см и 14 см.
Объяснение:
Остальное не проходили, sorry.