Док-во:
1)треугольник АВС-равнобедренный (по условию), значит АВ=ВС(по определению равнобедренного треугольника), АЕ=СФ(по условию), значит ВЕ=ВФ. ВД-общая сторона, ВД-является также биссектрисой угла В (по св-ву равнобедренного треугольника), значит угол ЕВД= углу ДВФ, следовательно треугольник ЕВД= треугольнику ДВФ ( по 1 признаку,т.е. по двум сторонам и углу м/у ними).
2)т.к. треугольник АВС-равнобедренный (по условию), то угол А= углу С ( по св-ву равнобедренного треугольника, что углы при основании равны), АЕ=ФС (по условию), АД=ДС (т.к. ВД-медиана), следовательно треугольник АЕД=ДСФ(по 1 признаку).
Решим задачу так:
1. Построим прямую а и точку А на ней.
2. Из точки А построим угол, равный известному нам, и под этим углом прямую b
3. Построим прямую д, паралелльную b, на расстоянии, равном высоте h из условий задачи. Обозначим точку В пересечения прямых b и д.
4. Из точки В построим известный нам угол "в другую сторону" (т.е. не параллельно прямой b) и прямую с под этим углом. Обозначим точку С пересечения прямых
б и с.
Ура, треугольник АВС построен.
Для доказательства построим из точки В отрезок ВЕ перпендикулярный отрезку АС. Поскольку точка В лежит на прямой д, параллельной отрезку АС и находится на расстоянии h, значит ВЕ является высотой, построенной к боковой стороне и равно h