М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Найти градусные меры углов образованных при пересечении 2 прямых если сумма двуз из них равна 140 градусов

👇
Ответ:
10RAM10
10RAM10
24.03.2020
(360-140) : 2 = 80° - градусная мера 2 или 3 угла 140 : 2 = 70° - градусная мера 1 или 4 угла
4,5(80 оценок)
Открыть все ответы
Ответ:
vashchilkophoto
vashchilkophoto
24.03.2020
Условие задачи неполное, так как с данной фиксированной площадью имеется бесконечно много сегментов, и радиусы соответствующих секторов будут все разными.
Поэтому задача может быть решена только в общем виде.

Площадь сектора:
Sсект = πR²α / 360°
Если угол задан в радианах, то
Sсект = πR²α / (2π)  = 1/2 · R²α

Площадь треугольника АВС:
Sabc = 1/2 · R²·sinα

Площадь сегмента:
Sсегм = Sсект - SΔabc  = 1/2 · R²α - 1/2 · R²·sinα = 1/2 · R²(α - sinα)

По условию, площадь сегмента равна 3π - 9:
1/2 · R²(α - sinα) = 3π - 9
R² = (6π - 18) / (α - sinα)
R = √( (6π - 18) / (α - sinα) )

По этой формуле можно вычислить радиус, если известен угол сектора.
Например:
α = π/6
R = \sqrt{ \frac{6( \pi - 3)}{ \frac{ \pi }{6}- \frac{1}{2} } } = \sqrt{ \frac{6( \pi -3)}{ \frac{ \pi -3}{6} } } = \sqrt{36} = 6
4,6(33 оценок)
Ответ:
ванга13
ванга13
24.03.2020
Условие задачи неполное, так как с данной фиксированной площадью имеется бесконечно много сегментов, и радиусы соответствующих секторов будут все разными.
Поэтому задача может быть решена только в общем виде.

Площадь сектора:
Sсект = πR²α / 360°
Если угол задан в радианах, то
Sсект = πR²α / (2π)  = 1/2 · R²α

Площадь треугольника АВС:
Sabc = 1/2 · R²·sinα

Площадь сегмента:
Sсегм = Sсект - SΔabc  = 1/2 · R²α - 1/2 · R²·sinα = 1/2 · R²(α - sinα)

По условию, площадь сегмента равна 3π - 9:
1/2 · R²(α - sinα) = 3π - 9
R² = (6π - 18) / (α - sinα)
R = √( (6π - 18) / (α - sinα) )

По этой формуле можно вычислить радиус, если известен угол сектора.
Например:
α = π/6
R = \sqrt{ \frac{6( \pi - 3)}{ \frac{ \pi }{6}- \frac{1}{2} } } = \sqrt{ \frac{6( \pi -3)}{ \frac{ \pi -3}{6} } } = \sqrt{36} = 6
4,4(34 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ