Так как точка Р является серединой АВ, а точка Q серединой АС, то РQ – средняя линия треугольника АВС.
Средняя линия параллельна одной из сторон треугольника. Тоесть PQ//BC.
Тогда угол AQP=угол АСВ как соответственные при параллельных прямых PQ u BC и секущей АС;
Угол ВАС – общий;
Тогда ∆АВС~∆APQ по двум углам.
Так как точка Р является серединой АВ, то АР/АВ=1/2, а точка Q серединой АС, то AQ/AC=1/2.
Следовательно: АР/АВ=AQ/AС, тоесть стороны ∆APQ относятся к сторонам ∆АВС в равных отношениях, тоесть стороны одного треугольника пропорциональны сторонам другого;
Угол ВАС – общий;
Тогда ∆АВС~∆APQ по двум пропорциональным сторонам и углу между ними.
Внимание : тут два варианта .
62 или 58 см
Объяснение:
Вариант 1 (если бисс АК)
1) уг 1=уг 2 (как накрест лежащие при парал прямых);
уг 1=уг 3 (тк бисс);
тогда уг 2=уг3 => треуг АВК–равнобед =>АВ=ВК=11 и =СD (как стороны парал);
2) ВС=11+9=20=АD;
3) Р =( 11+20)*2=62 см
Вариант 2 (если бисс DК)
1) уг 1=уг 2 (как накрест лежащие при парал прямых);
уг 1=уг 3 (тк бисс);
тогда уг 2=уг3 => треуг DСК–равнобед =>DС=СК=9 и =АВ (как стороны парал);
2) ВС=11+9=26=АD;
3) Р =( 9+20)*2=58
Чертёж в приложении.
Если что-то непонятно , пишите в комментах.
Успехов в учёбе! justDavid
ВС²=1+121+529=651; ВС≈25,51;
АС²=4+324+196=524; АС≈22,89.
Площадь находим по теореме Герона. р=0,5(11,45+25,51+22,89)=29,93.
S(АВС)=√29,93·18,48·4,42·7,04=√17210,9≈131,2. Из этого следует, что точки А, В, С не лежат на одной прямой