А1В и АС лежат в разных плоскостях и не имеют общих точек. Они – скрещивающиеся.
Чтобы найти угол между скрещивающимися прямыми, нужно: Провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся пересекающиеся прямые. Угол между ними равен углу между исходными скрещивающимися.
СD1 ║ BA1 и пересекает АС в т.С. Если провести диагональ АD1 в грани АА1D1D, получим треугольник АD1С, все стороны которого равны между собой ( т.к. диагонали равных квадратов равны). Следовательно. углы ∆ АСD1 равны, их градусная мера 180°:3=60°.
Градусная мера угла между прямыми ВА1 и АС равна 60°.
Площадь треугольника, вписанного в окружность, равна S = (a b c) / (4 R) также площадь равна S = 1/2 c h. Следовательно, (a b c) / (4 R) = 1/2 c h Так как треугольник равнобедренный, a = b = 5, R = 5; c - основание тр-ка.Сократим уравнение на величину "с" и подставим значения:(5*5) / (4*5) = 1/2 * h5/4 = 1/2 hh = 5/2 – высота треугольникаПо теореме Пифагора половина основания равна:1/2 с = √52 - (5/2)2 = √75/4 = √3*25/4 = 5/2 √3,Полное основание равно 2 * 5/2 √3 = 5√3Площадь треугольника будет равна:S = 1/2 * 5√3 * 5/2 = 25/4 √3
АВС - треугольник С =90 град СК - медиана (АК+КВ) уг КСВ : уг. АСК = 1 : 2 Обозначим через х коэфф.пропорции и составим уравение х+2х=90 3х=90 х=30 Следовательно, КСВ=30 град АСК= 60 град Наименьшая сторона лежим против меньшего угла. Рассмотрим треугольник СКМ (КМ перпендикулярна СВ и делит СВ пополам, то есть является средней линией треугольника. Треугольник КСМ прямоугольный. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. СК - гипотенуза, СК=10 см (по условию). Значит КМ=5 см Медиана прямоугольного треугольника, проведенная из вершины прямого угла равна половине гипотенузы. Значит, гипотенуза АВ= 2*10=20 см
ответ:60°
Объяснение:
А1В и АС лежат в разных плоскостях и не имеют общих точек. Они – скрещивающиеся.
Чтобы найти угол между скрещивающимися прямыми, нужно: Провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся пересекающиеся прямые. Угол между ними равен углу между исходными скрещивающимися.
СD1 ║ BA1 и пересекает АС в т.С. Если провести диагональ АD1 в грани АА1D1D, получим треугольник АD1С, все стороны которого равны между собой ( т.к. диагонали равных квадратов равны). Следовательно. углы ∆ АСD1 равны, их градусная мера 180°:3=60°.
Градусная мера угла между прямыми ВА1 и АС равна 60°.