На координатной прямой расстояние между точками всегда является положительным числом и равняется модулю разности координат конца и начала отрезка, заданного этими точками. Так, расстояние между точками А (а) и B (b) составляет
АВ = |b - а|.
Таким образом, расстояние между заданными по условию точками А и В:
а) при а = 2, b = 8
АВ = |8 - 2| = 6;
б) при а = -3, b = -5
АВ = |-5 - (-3)| = |-2| =2;
в) при а = -1, b = 6
АВ = |6 - (-1)| = 7.
ответ: расстояние между точками А и B равно: а) 6; б) 2; в) 7
Объяснение:
сори если что-то не правильно
Так как окружность касания осей координат, то для координат ее центра и радиуса окружности справделиво равенство
учитывая, что окружность проходит через точку (8;-4) опускаем модуль (окружность за исключением точек касания находится в IV четверти) 
уравнение окружности имеет вид (x-x_0)^2+(y-y_0)^2=R^2
;
R=20 или R=4
значит существуют две окружности проходящие через точку (8;-4) и касающееся осей координат

и 
вторая задача, пряммая симетричная относительно точек А и В - середнинный перпендикуляр
Ищем координаты середины отрезка АВ,

(0;2)
ищем уравнение пряммой АВ в виде y=kx+b
3=-2k+b;
1=2k+b;
2=-4k
1=2k+b;
k=-0.5
b=2;
y=-0.5x+2
перпендикулярные пряммые связаны соотношением угловых коэффициентов
k_1k_2=-1
поєтому угловой коєффициент искомой пряммой равен k=-1/(-0.5)=2
учитывая что искомая пряммая проходит через точку С ищем ее уравнение в виде
y=kx+b (k=2)
2=2*0+b;
b=2
y=2x+2 или y-2x-2=0
в чем ошибка у вас - неведомо, ибо вы своего решения не предоставили
третий угол = 180- (32+68) = 180-100= 80°