М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vikylev011
vikylev011
22.03.2021 11:10 •  Геометрия

Между сторонами угла (ab), равного 60°, проходит луч c.найдите углы (ac) и (bc), если: угол (ac) на 30° больше ушла (bc)

👇
Ответ:
Graffiti1337
Graffiti1337
22.03.2021
Углы (ac) и (bc) в сумме составляют угол (ab).
∠(ac) + ∠(bc) = 60°
∠(ac) - 30° = ∠(bc)
∠(ac) + ∠(ac) - 30 = 60° <=> 2∠(ac) = 90° <=> ∠(ac) = 45°
∠(bc) = 45° - 30° = 15°
4,8(16 оценок)
Открыть все ответы
Ответ:
cherru1
cherru1
22.03.2021
Найдите сторону равнобокой трапеции, основания которой равны 10 и 8, а диагонали перпендикулярны боковым сторонам.
–––––––––––––––––––––––––––––––––––––––––––––––
Вариант решения.
Опустим высоту из тупого угла. 
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований.
Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда
х²=10*1=10
х=√10 см
Знайдіть бічну сторону рівнобічної трапеції, основи якої дорівнюють 10 см і 8 см, а діагоналі перпен
4,7(15 оценок)
Ответ:
vkarant2016l
vkarant2016l
22.03.2021

Поскольку плоскость сечения параллельна оси цилиндра, сечением будет прямоугольник с высотой H, равной высоте цилиндра, и основанием длиной L, являющемся хордой, лежащей в основании цилиндра. Также известно, что диагональ прямоугольника имеет наклон в 60 градусов к его основанию. Отсюда можно записать следующие соотношения:

 

\frac{H}{L}=\tan 60^o=\sqrt{3}\\ H=L\sqrt{3}\\ S_s=L\cdot H=16\sqrt{3}\\ L^2\sqrt{3}=16\sqrt{3}\\\\ L=4\\ H=4\sqrt{3} 

 

Далее проведем отрезки, соединяющие концы хорды с центром основания цилиндра. Получится равнобедренный треугольник с углом в вершине 120 градусов и бедрами, равными радиусу основания цилиндра. Проведя в этом треугольнике высоту из вешины к хорде, получим два прямоугольных треугольника, одним из катетов которых является половина хорды. Поскольку угол между этими катетами и гипотенузой равен 30 градусам, можно записать следующее соотношение между длиной хорды и радиусом основания цилиндра:

 

\frac{L}{2}=R\cos 30^o\\ L=2R\cos 30^o=R\sqrt{3}\\ R=\frac{L}{\sqrt{3}}=\frac{4}{\sqrt{3}} 

 

Запишем теперь выражение для площади боковой поверхности цилиндра:

 

S=2\pi RH=2\pi\cdot\frac{4}{\sqrt{3}}\cdot 4\sqrt{3}=32\pi (cm^2) 

 

ответ: Площадь боковой поверхности цилиндра равна 32пи кв. см 

4,4(73 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ