Если единственный известный угол равен 90°, а в условиях приведены длины двух сторон треугольника (b и c), определите, которая из них является гипотенузой - это должна быть сторона больших размеров. Затем воспользуйтесь теоремой Пифагора и рассчитайте длину неизвестного катета (a) извлечением квадратного корня из разности квадратов длин большей и меньшей сторон: a = √(c²-b²). Впрочем, можно не выяснять, которая из сторон является гипотенузой, а для извлечения корня использовать модуль разности квадратов их длин.
Зная длину гипотенузы (c) и величину угла (α), лежащего напротив нужного катета (a), используйте в расчетах определение тригонометрической функции синус через острые углы прямоугольного треугольника. Этого определение утверждает, что синус известного из условий угла равен соотношению между длинами противолежащего катета и гипотенузы, а значит, для вычисления искомой величины умножайте этот синус на длину гипотенузы: a = sin(α)*с.
Если кроме длины гипотенузы (с) дана величина угла (β), прилежащего к искомому катету (a), используйте определение другой функии - косинуса. Оно звучит точно так же, а значит, перед вычислением просто замените обозначения функции и угла в формуле из предыдущего шага: a = cos(β)*с.4Функция котангенс с вычислением длины катета (a), если в условиях предыдущего шага гипотенуза заменена вторым катетом (b). По определению величина этой тригонометрической функции равна соотношению длин катетов, поэтому умножьте котангенс известного угла на длину известной стороны: a = ctg(β)*b.5Тангенс используйте для вычисления длины катета (a), если в условиях есть величина угла (α), лежащего в противоположной вершине треугольника, и длина второго катета (b). Согласно определению тангенс известного из условий угла - это отношение длины искомой стороны к длине известногокатета, поэтому перемножьте величину этой тригонометрической функции от заданного угла на длину известной стороны: a = tg(α)*b.
1) M - cередина AD, M∈(ABC), C∈(ABC) ⇒ проведем MC (B1C)∈(BCC1), M∈(ADD1), а т.к. (ADD1) || (BCC1), то секущая плоскость будет пересекать (АDD1) по прямой k, проходящей через точку М параллельно B1C. k пересечет АА1 в точке N, причем AN=NA1. N∈(AA1B1) и B1∈(AA1B1) ⇒ проведем NB1 MNB1C - сечение куба 2) MN || B1C, CM=B1N=√(a²-(a/2)²)=a√3/2 ⇒ MNB1C трапеция S (MNB1C) = 1/2 (MN+B1C) * NH, где NH - это высота трапеции B1C=a√2 / 2 MN = 1/2 B1C = a√2 / 4 B1H = 1/2 (B1C - MN) = a√2 / 4 NH = √(B1N² - B1H²) = a√10 / 4 S (MNB1C) = 3 a² √5 / 16
ответ:бічна сторона=24, всі кутом по 60°
Объяснение:
Припустимо:
трикутник АВС: АС-основа=24
ВД-висота=12√3
Виисота у рівнобедреному трикутнику є медіаною, тому ділить основу на дві рівні частини: АД=ДС=12. З трикутника ВДС( кутД 90°) ВС=24( за Т. Піфагора)
Щоб знайти кут візьмемо cos
Cosa= 12/24=1/2=60°
У рівнобедриному трикутнику кутом при основі рівні тода кут1=куту2=60° кут3=60°