М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ffff40
ffff40
10.08.2020 12:00 •  Геометрия

Висота рівнобедреного трикутника дорівнює 12√3 а основа 24 м знайдіть кути трикутника і його бічну сторону

👇
Ответ:
Дишka
Дишka
10.08.2020

ответ:бічна сторона=24, всі кутом по 60°

Объяснение:

Припустимо:

трикутник АВС: АС-основа=24

ВД-висота=12√3

Виисота у рівнобедреному трикутнику є медіаною, тому ділить основу на дві рівні частини: АД=ДС=12. З трикутника ВДС( кутД 90°) ВС=24( за Т. Піфагора)

Щоб знайти кут візьмемо cos

Cosa= 12/24=1/2=60°

У рівнобедриному трикутнику кутом при основі рівні тода кут1=куту2=60° кут3=60°

4,6(29 оценок)
Открыть все ответы
Ответ:
Мозг66615
Мозг66615
10.08.2020
Если единственный известный угол равен 90°, а в условиях приведены длины двух сторон треугольника (b и c), определите, которая из них является гипотенузой - это должна быть сторона больших размеров. Затем воспользуйтесь теоремой Пифагора и рассчитайте длину неизвестного катета (a) извлечением квадратного корня из разности квадратов длин большей и меньшей сторон: a = √(c²-b²). Впрочем, можно не выяснять, которая из сторон является гипотенузой, а для извлечения корня использовать модуль разности квадратов их длин.


Зная длину гипотенузы (c) и величину угла (α), лежащего напротив нужного катета (a), используйте в расчетах определение тригонометрической функции синус через острые углы прямоугольного треугольника. Этого определение утверждает, что синус известного из условий угла равен соотношению между длинами противолежащего катета и гипотенузы, а значит, для вычисления искомой величины умножайте этот синус на длину гипотенузы: a = sin(α)*с.

Если кроме длины гипотенузы (с) дана величина угла (β), прилежащего к искомому катету (a), используйте определение другой функии - косинуса. Оно звучит точно так же, а значит, перед вычислением просто замените обозначения функции и угла в формуле из предыдущего шага: a = cos(β)*с.4Функция котангенс с вычислением длины катета (a), если в условиях предыдущего шага гипотенуза заменена вторым катетом (b). По определению величина этой тригонометрической функции равна соотношению длин катетов, поэтому умножьте котангенс известного угла на длину известной стороны: a = ctg(β)*b.5Тангенс используйте для вычисления длины катета (a), если в условиях есть величина угла (α), лежащего в противоположной вершине треугольника, и длина второго катета (b). Согласно определению тангенс известного из условий угла - это отношение длины искомой стороны к длине известногокатета, поэтому перемножьте величину этой тригонометрической функции от заданного угла на длину известной стороны: a = tg(α)*b.
4,6(33 оценок)
Ответ:
Ilona286
Ilona286
10.08.2020
1) M - cередина AD,
M∈(ABC), C∈(ABC) ⇒ проведем MC
(B1C)∈(BCC1), M∈(ADD1), а т.к. (ADD1) || (BCC1), то секущая плоскость будет пересекать (АDD1) по прямой k, проходящей через точку М параллельно B1C. k пересечет АА1 в точке N, причем AN=NA1. 
N∈(AA1B1) и B1∈(AA1B1) ⇒ проведем NB1 
MNB1C - сечение куба 
2) MN || B1C, CM=B1N=√(a²-(a/2)²)=a√3/2 ⇒ MNB1C трапеция
S (MNB1C) = 1/2 (MN+B1C) * NH, где NH - это высота трапеции 
B1C=a√2 / 2 
MN = 1/2 B1C = a√2 / 4
B1H = 1/2 (B1C - MN) = a√2 / 4
NH = √(B1N² - B1H²) = a√10 / 4
S (MNB1C) = 3 a² √5 / 16
Дан куб abcda1b1c1d1, ребро которого равно а. секущая плоскость проходит через середину ребра ad и п
4,7(53 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ