Пусть сторона АВ треугольника АВС равна х см тогда сторона ВС равна 2 1/3 х см, а сторона АС равна (2 1/3 х + 2) см (если сторона ВС на 2 см меньше стороны АС, то сторона АС, наоборот, на 2 см больше стороны ВС). По условию задачи известно, что периметр треугольника АВС (периметр треугольника равен сумме трех его сторон; Р = АВ + ВС + АС) равен (х + 2 1/3 х + (2 1/3 х + 2)) см или 36 см. Составим уравнение и решим его.
x + 2 1/3 x + (2 1/3 x + 2) = 36;
x + 2 1/3 x + 2 1/3 x + 2 = 36;
5 2/3 x = 36 - 2;
17/3 x = 34;
x = 34 : 17/3;
x = 34 * 3/17;
x = 6 (см) - сторона АВ;
2 1/3 * x = 7/3 * 6 = 14 (см) - сторона ВС;
2 1/3 x + 2 = 14 + 2 = 16 (см) - сторона АС.
ответ. АВ = 6 см, ВС = 14 см, АС = 16 см.
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.