△ABC;
А(2;-2;2), В(0;2;0), С(0;0;-2).
Найти:P△ABC = ?
Решение:Чтобы найти периметр треугольника, нужно найти расстояния от точек, из которых состоит данный треугольник.
Расстояние от точки А до В - длина АВ.
Расстояние от точки В до С - длина ВС.
Расстояние о точки А до С - длина АС.
Вычисляется это расстояние следующим образом:
d - расстояние.
d = √((В(х) - A(x))² + (B(y) - A(y))² + (B(z) - A(z))²).
Сейчас показала формулу на примере нахождения расстояния от точки А до В.
Сделаем также, только представляю вместо значения х, у и z, данные значения:
d = √((0 - 2)² + (2 - (-2))² + (0 - 2)²) = √(4 + 16 + 4) = √24 = 2√6 - длина АВ.
d = √((0 - 0)² + (0 - (-2))² + (-2 - 0)²) = √(0 + 4 + 4) = √8 = 2√2 - длина ВС.
d = √((0 - 2)² + (0 - (-2))² + (-2 - 2)²) = √(4 + 4 + 16) = √24 = 2√6 - длина АС.
Вывод: этот треугольник - равнобедренный, так как АВ = АС = 2√6
P = a + b + c = 2√6 + 2√6 + 2√2 = 4√6 + 2√2 = 2√2 ⋅ (2√3 + 1)
ответ: 2√2 ⋅ (2√3 + 1).1) нет 2) да 3) нет 4) нет
Объяснение:
1) Если диагонали четырёхугольника взаимно перпендикулярны, то он может быть либо ромбом, либо квадратом. То есть не обязательно ромбом.
ответ: данное утверждение нельзя считать правильным.
2) У ромба все стороны равны между собой. Значит, его периметр всегда в 4 раза больше длины его стороны. А отношение 4 к 1 всегда равно 4.
ответ: это правильное утверждение.
3) Диагонали равны и у прямоугольника и у квадрата. Оба они четырёхугольники. Поэтому если диагонали у четырёхугольника равны, то он не обязательно должен быть прямоугольником, он может быть и квадратом.
ответ: данное утверждение нельзя считать правильным.
4) Это неправильно. Например, возьмём прямоугольник 5 х 10. Его периметр = 30 см, отношение 30 : 10 = 3. А в прямоугольнике 5 х 20 периметр равен 50, а отношение 50 : 20 = 2,5, а не 3, как было в первом расчете.
ответ: данное утверждение нельзя считать правильным.