Точки t и p - соответственно середины сторон ab и ac треугольника abc. в треугольник atp вписана окружность, длина радиуса которой равна 2 см. вычислите площадь треугольника atp.
Поскольку в равнобедренном треугольнике АВС углы при основании ВС равны, то /_В = /_С, но это значит, что и внешние углы при вершинах В и С равны между собой: /_АВВ1 = /_АСС1 И половинки этих внешних углов, полученных при проведении биссектрис ВВ2 и СС2 также равны между собой /_В2ВВ1 = /_С2СС1. Биссектрисы В2В и С2С пересекаются в точке О. /_ ОВС = /_В1ВВ1 как вертикальные, и /_ОСС1 = /_С2СС! как вертикальные. Но поскольку /_В2ВВ1 = /_С2СС1, то и /ОВС = /_ОСВ, и треугольник ОВС - равнобедренный с основанием ВС. Следовательно, ОВ = ОС как боковые стороны равнобедренного тр-ка ОВС, что и требовалось доказать.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°