1) ребро вс тетраэдра авсd перпендикулярно к плоскости авd. bc=12 в треугольнике авd угол в - прямой, угол а равен 30 градусов, ad=14. какие из следующих утверждений являются верными? 1. плоскость всd перпендикулярна к плоскости авd 2. расстояние от точки d до плоскости аbc равно 7 3. расстояние от точки a до прямой cd равно 14 4. тангенс угла между плоскостью авd и плоскостью cbd равен 0 2) ребро мс тетраэдра авсм перпендикулярно к плоскости авс, мс=12. в треугольнике авс угол с - прямой, угол а равен 30 градусов, ав=18. какие из следующих утверждений являются верными? 1. плоскость всм перпендикулярна к плоскости авс 2. расстояние от точки в до плоскости асм равно 9 3. расстояние от точки м до прямой ав равно ам 4. котангенс угла между плоскостью авс и плоскость асм равен 0,75
P(ABCD)=32 см; BC=10 см; ∠D=150°; ∠BAK=30°.
Объяснение:
Рассмотрим четырехугольник KBMD. Сумма углов в четырехугольнике равна 360°, значит 30°+90°+90°+∠KDM=360°
Получаем, ∠KDM=360-210=150°
Так как сумма внутренних односторонних углов при параллельных прямых BC и AD, и секущей CD равна 180°, то ∠BCM+∠KDM=180°.
Следовательно, ∠BCM=180-150=30°.
В параллелограмме противоположные углы равны, значит ∠A=∠C=30°, тогда в прямоугольном треугольнике ABK гипотенуза AB=2*BK=2*3=6 см, а в прямоугольном треугольнике BMC гипотенуза BC=2*BM=2*5=10 см.
В параллелограмме противоположные стороны равны, значит:
AD=BC=10 см, CD=AB=6 см.
Периметр параллелограмма АВСD равен 10+10+6+6=32 см.