1) Строим данный угол и проводим биссектрису. От вершины биссектрисы откладываем диагональ АВ и делим ее пополам, точкой О. Проводим перпендикуляр через точку О к диагонали АВ, который пересекает стороны угла в точках С и D, которые являются вершинами искомого ромба. 2) Пусть дан угол а и диагональ d. Необходимо построить ромб, в котором один из углов равен а, а противолежащая диагональ равна d. Предположим, что существует ромб ABCD, в котором диагональ Диагональ АС — биссектриса Проведем через точку A прямую и отложим отрезки по разные стороны от точки А, следовательно, прямоугольник. Построим Проведем биссектрису AC угла BAD. Через точку А проведем прямую и от точки А отложим Проведем через прямые, параллельные АС, точки пересечения этих прямых со сторонами угла BAD обозначим соответственно В и D. Раствором циркуля, равным АВ, проведем дугу с центром В, при этом, точку пересечения дуги с прямой а обозначим С. Получим четырехугольник ABCD. Докажем, что ABCD — ромб в котором — по построению. Так как прямоугольник по построению, то отрезок АО — серединный перпендикуляр к BD и равнобедренный ОС серединный перпендикуляр в значит, — равнобедренный Так как по построению, то и ромб с По построению значит, искомый ромб.
Я не понимаю, зачем для таких простейших зависимостей выбрали именно графический Гораздо быстрее данную задачу решить аналитическим Первая функция - монотонно возрастающая на всей области определения, а прямая y=-1, параллельная оси Ox, пересечет ее ровно один раз. Это является следствием из того, что монотонна возрастающая функция y=3x принимает каждое свое значение ровно один раз, в частности, и значение y=-1. ответ: 1 точка пересечения. Еще проще - с уравнения. Приравниваем правые части равенств y=3x и y=-1: 3x=-1; x=-1/3. Отсюда получаем, что это точка единственная, так как из определения функции следует, что каждому значению аргумента соответствует одно единственное значение функции. ответ: 1 точка пересечения. Ну, и самый глупый и абсолютно бредовый для данного случая графический, то есть с графика. В прямолинейной системе координат строим график функции y=3x (удобней всего по точкам, ибо сдвиги здесь не особо нужны) и прямую y=-1. Получившийся чертеж наглядно доказывает: точка пересечения единственная. ответ: 1 точка пересечения.
Я не понимаю, зачем для таких простейших зависимостей выбрали именно графический Гораздо быстрее данную задачу решить аналитическим Первая функция - монотонно возрастающая на всей области определения, а прямая y=-1, параллельная оси Ox, пересечет ее ровно один раз. Это является следствием из того, что монотонна возрастающая функция y=3x принимает каждое свое значение ровно один раз, в частности, и значение y=-1. ответ: 1 точка пересечения. Еще проще - с уравнения. Приравниваем правые части равенств y=3x и y=-1: 3x=-1; x=-1/3. Отсюда получаем, что это точка единственная, так как из определения функции следует, что каждому значению аргумента соответствует одно единственное значение функции. ответ: 1 точка пересечения. Ну, и самый глупый и абсолютно бредовый для данного случая графический, то есть с графика. В прямолинейной системе координат строим график функции y=3x (удобней всего по точкам, ибо сдвиги здесь не особо нужны) и прямую y=-1. Получившийся чертеж наглядно доказывает: точка пересечения единственная. ответ: 1 точка пересечения.