1. Все грани куба - квадраты. Тогда ребро куба: а = √9 = 3 см V = a³ = 3 = 27 см³
2. а = 2 см - ребро основания призмы, α = 30° - угол в основании, h = 3 см - высота призмы.
V = Sосн · h
Sосн = a²·sinα = 4 · 1/2 = 2 см²
V = 2 · 3 = 6 см³
3. В основании правильной треугольной пирамиды - правильный треугольник со стороной а = 5 см. ОС = а√3/3 = 5√3/3 см как радиус описанной окружности. ΔSOC - прямоугольный, равнобедренный, значит высота пирамиды SO = ОС = 5√3/3 см
V = 1/3 · Sосн · SO V = 1/3 · a²√3/4 · SO V = 1/3 · 25√3/4 · 5√3/3 = 125/12 см³
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
Объяснение:
Пусть N середина стороны АВ, тогда MN = 1/3 CN
KA + KB = 2KN
KC = KN + NC = KN + 3MN
KA + KB + KC = 3KN + 3MN = 3KM чтз
или KM = 1/3 (KA + KB + KC)