М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yana3657
yana3657
13.03.2021 04:02 •  Геометрия

Периметр равнобедренного треугольника в четыре раза больше основания и на 10 см больше боковой стороны. найдите боковую сторону треугольника.

👇
Ответ:
senyadubra
senyadubra
13.03.2021

пусть а-боковая сторона, b-основание, тогда

2а+b=4b

2a+b=a+10

 

a=10-b

20-2b+b=4b

5b=20

b=4

a=6

ответ 6

4,8(37 оценок)
Открыть все ответы
Ответ:
Erzhan030
Erzhan030
13.03.2021

1. AN = AB^2/AM = 3; MN = 2; => OB = 1;

=> угол BAO = 30 градусов; BH = AB*sin(30) = корень(3)/2;

2. О - центр правильного шестиугольника.

ОС = ОD = CD = OA; => OK = KD; => AK/KD = 3;

3. вот тут есть кое-что интересное. Построение такое - проводим ВР II CD, Р лежит на MN. Проводим PK II BA, K лежит на AD. Ясно, что PN = BC; => MP = (AD - BC)/2 = AK; 

Трапеция KPND равна трапеции MBCN, то есть её площадь составляет 3/5 площади AMNP. Площадь параллелограмма AMPK, соответственно, составляет 2/5 от площади AMNP. Поскольку у этих фигур общая высота, отношение их площадей равно отношению средних линий.

Обдумайте это внимательно - речь идет о средних линиях параллелограмма (а параллелограмм - частный случай трапеции :)) AMPK, равной АК = МР = (AD - BC)/2; и средней линии трапеции KPND, то есть - трапеции MBCN, равной ((AD + BC)/2 + BC)/2 = (AD/4 + 3*BC/4); 

(Я вынужден сделать замечание. Условие MN = 10 я намеренно не использую, хотя отлично вижу, что тут можно было бы подставить это значение.)

Итак, получилось (AD/2 + 3*BC/2)/(AD - BC) = 3/2; обозначим AD/BC = x;

(x/2 + 3/2)/(x - 1) = 3/2; x = 3;

Условие MN = 10 позволяет найти основания, равные 5 и 15.

4,5(91 оценок)
Ответ:

Доказательство:  АК = СМ, т. к. в равнобедренном тр-ке биссектрисы, проведенные к боковым сторонам равны (по теореме);

Четырехугольник АМКС, где СМ и АК - диагонали, Δ АОС равнобедренный , <ОАС = <МАО = <АСО = <КСО = х; 

<АОС = <МОС = 180 - х - х = 180 - 2х. 

ΔМОК - равнобедренный.

Т.к. АК = МС и АО = ОС , то ОМ = ОК, <ОМК = <ОКМ = (180 - <МОК)/2 = 180 - (180 - 2х)/2 = х, т.е  <ОМК = <АСО и <ОАС = <ОКМ.

Если при пересечении двух прямых третьей внутренние разносторонние углы равны, то прямые параллельны (признаки параллельности прямых

4,6(55 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ