A1.
Sшестиугольника =
ответ: 4
A2.
Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:
ответ: 1
A3.
Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):
Площадь одного треугольника будет равна:
Площадь шестиугольника:
ответ: 2
B1.
Пусть вписанный треугольник - ΔABC, сторона = ; описанный - ΔA₁B₁C₁, сторона -
Для ΔA₁B₁C₁ радиус высоты
⇒
⇒
Для ΔABC радиус R = высоты
:
⇒
⇒
Найдем соотношение периметров и площадей:
Тут главное разобраться что есть, что
ABCD- прямоугольная трапеция где ∠A=45° AD,BC - основания ⇒
BC=12√2- как меньшее основание, AD-большее основания, CD- меньшая боковая сторона с углами ∠С=∠D=90° при основаниях
АВ-большая боковая сторона
Для решения решения задачи опустим высоту BH на большее основание AD⇒∠BHA=∠BHD=90° ⇒ Получим прямоугольник BCDH т.к ∠C=∠D=90° по условию ABCD- прямоугольная трапеция и ∠BHD=90° ⇒
BC=HD=12√2. ∠BHD=90° ⇒ΔBDH - прямоугольный тогда по теореме Пифагора BD²=HD²+BH²
BH=√(BD²-HD²)=√(18²-(12√2)²)=√36=6
∠BHA=90°⇒ΔBHA- прямоугольный треугольник, где AB- гипотенуза, BH- противолежащий катет к углу ∠A=45°
тогда по определению синуса⇒sin∠B=BH/AB
AB=BH/sin∠B=6÷sin45°=6÷√2/2=6√2
А задачу решить очень легко,
1)2+7=9 частей
2)90град. : 9 = 10град. - 1 часть
3) 2 · 10град. = 20град.
5) 7 · 10 град. = 70град.
ответ : 20град. 70 град.