Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей.
1. Основание - квадрат. Площадь квадрата можно найти по формуле , где d-диагональ. см
2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков. 10/2=5 см
3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота. Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту. По теореме Пифагора: SC²=SO²+OC² 13²=SO²+5² SO²=169-25 SO²=144 SO=12 см
Дано: ABCD-прямоугольник Sabcd=480cм^2 P=92см CD=BD=с-диагонали Найти: Диагонали с П.с надо всё расписывать, и доказывать равность треугольников ABC i CDA. P=2(a+b) S=a×b S=480см^2; P=92см Далее мы подставляем значения и делим на два, но а и б нам неизвестны, потому что могут появляться другие значения: 92=2(a+b)
a+b=92/2 a+b=46 В итоге у нас получилось 46 см, но у нас есть площадь, поэтому составляем систему уровнения: |a×b=480; |a+b=46;
|(46-b)×b=480 |a=46-b В итоге у нас квадратное уровнение 46b-b^2-480=0 | - b^2-46b+480=0
За теоремою Вієта b1+b2=46 b2×b1=480
b1=16 b2=30 a1=30 b2=16 Так у нас получается 2 значения а и б, поэтому: Расмотрим треугольник АBC /C=90° За теоремою Пифагора: c^2=16^2+30^2=256+900=1156
1156 вытаскиваем из корня квадрата и с=34 см ответ: 34 см
Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей.
1. Основание - квадрат. Площадь квадрата можно найти по формуле
2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков.
10/2=5 см
3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота.
Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту.
По теореме Пифагора:
SC²=SO²+OC²
13²=SO²+5²
SO²=169-25
SO²=144
SO=12 см