∠ АСВ=80°
Так как вписанный угол равен половине угловой меры дуги, на которую он опирается, то ∠АDВ=1180°:2=59° , ∠DBE=42°:2=21°.
Рассмотрим ΔСDВ=, где ∠АDВ=59° , ∠DBE=21°.
Согласно теореме о сумме трёх углов треугольника
∠ DСВ=180°-59°-21°=100°.
∠ DСВ и ∠АСВ- смежные, следовательно
∠АСВ=180°-∠ DСВ =180°-100°=80°
2вариант решения
Так как вписанный угол равен половине угловой меры дуги, на которую он опирается, то ∠АDВ=1180°:2=59° , ∠DBE=42°:2=21°.
Рассмотрим ΔСDВ=, где ∠АDВ=59° , ∠DBE=21°.
∠АСВ- внешний угол треугольника СDB. Внешний угол треугольника равен сумме двух я углов треугольника, не смежных с этим внешним углом :
∠АСВ= ∠АDВ+ ∠DBE=59°+21°=80°.
расстояние от дома до места, где рассыпано зерно, составляет 8 м.
Объяснение:
Если голуби, стартовавшие синхронно и с одинаковой скоростью, долетели до зерна одновременно, значит, образованные фонарем, домом, землей и траекторией полета голубей два прямоугольных треугольника будут иметь равные гипотенузы (траектории полета голубей).
У одного треугольника катеты будут соответственно равны высоте дома (15 м) и отрезку земли до места, где Анна рассыпала зерно, обозначим его Х м.
У другого треугольника катеты будут соответственно равны высоте фонарного столба (8 м) и отрезку земли до места, где Анна рассыпала зерно:
23 - Х м.
Так как гипотенузы треугольников равны, то на основании теоремы Пифагора, согласно которому квадрат гипотенузы равен квадрату катетов, можно составить уравнение:
с2 = 152 + Х2 = 82 + (23 – Х) 2;
152 + Х2 = 82 + 232 – 2 * 23 * Х + Х2;
152 + Х2 = 82 + 232 – 2 * 23 * Х + Х2;
152 = 82 + 232 – 2 * 23 * Х;
225 = 64 + 529 – 46 * Х;
46 * Х = 64 + 529 – 225;
46 * Х = 368;
Х = 368 : 46;
Х = 8.
2х=30-4
2х=26
х=13. ЭТо ДС,
значит, ВД 13+4=17
13+17=30