Ну, я думаю так: два основания ВС и AD , МВ=СМ, из этого можем доказать равенство треугольников АВМ и МСD(МВ=СМ, АВ=СD, угол АВМ= углу МСD как разность с равными т.е если МВ=СМ, то угол МВС=МСВ) следовательно, АМ=МD . ВСЕ=)
1) радиус вписанной окружности=сторона*корень3/6=10*корень3/6=5*корень3/3, длина окружности=2пи*радиус=2пи*5*корень3/3=10пи*корень3/3, 2)радиус описанной окружности около правильного многоугольника=сторона/(2*sin(180/n)), где n -количество углов, радиус=12/(2*sin(180/6))=12/(2*(1/2))=12, в шестиугольнике радиус описанной = стороне=12, радиус вписанной окружности в квадрат=сторона/2, 12=сторона/2, сторона=12*2=24, площадь квадрата=24*24=576 3) треугольник АВС, уголА=90, АС=3., АВ=4, ВС = корень (АС в квадрате+АВ в квадрате)=корень(9+16)=5, радиус вписанной окружности=(АС+АВ-АС)/2=(3+4-5)/2=1, длина окружности=2пи*радиус=2пи*1=2пи, площадь круга=пи*радиус в квадрате=пи
Грань SCD и плоскость основания пирамиды пересекаются по прямой CD. Чтобы найти угол между этими плоскостями, рассмотрим треугольник SBC. Треугольник SBC -прямоугольный: SB перпендикулярна плоскости основания, а значит любой прямой, лежащей в плоскости основания, SB перпендикулярна BC. BC перпендикулярна CD, как стороны квадрата. SC- наклонная к плоскости основания перпендикулярна прямой CD по теореме о трех перпендикулярах-прямая (CD) проведенная в плоскости через основание наклонной(SC) перпендикулярно ее проекции (BC) на эту плоскость перпендикулярна и к самой наклонной.SC лежит в плокости грани SCD и перпендикулярна CD, BC лежит в плоскости основания и перпендикулярна CD , следовательно угол SCB -это угол между двумя плоскостями ABCD и SCD. Рассмотрим треугольник SBC и из этого треугольника найдем угол SCB. Найдем сторону квадрата: BD²=2BC², (4√2)²=2BC², BC²= 16·2/2=16, BC=4 ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания) найдем SB: SB²=SD²-BD² SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3. Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3 tg∠SCB=√3, ∠SCB=60 градусов
Ну, я думаю так: два основания ВС и AD , МВ=СМ, из этого можем доказать равенство треугольников АВМ и МСD(МВ=СМ, АВ=СD, угол АВМ= углу МСD как разность с равными т.е если МВ=СМ, то угол МВС=МСВ) следовательно, АМ=МD . ВСЕ=)